

Rôle structural des terres rares et solubilité dans les verres silicatés complexes

Daniel Caurant

Laboratoire de Chimie de la Matière Condensée de Paris UMR CNRS 7574 ENSCP (Chimie-ParisTech), Paris

Plan de la présentation

Première partie

- Qu'entend-on par verres silicatés complexes ?
- Pourquoi s'intéresser aux terres rares dans les verres silicatés complexes?
- Quels rôles structuraux peuvent jouer les TR au sein de ces verres ?

Deuxième partie

- Généralités sur les TR dans les déchets et les verres nucléaires
- Les TR dans les verres aluminoborosilicatés complexes (versions simplifiées de verres de confinement d'intérêt nucléaire):
 - Environnement et solubilisation des TR
 - Effets de changements de composition

Qu'entend-on par verres silicatés complexes ?

Des verres avec:

- \rightarrow Un ou plusieurs oxydes formateurs (SiO₂, B₂O₃, P₂O₅...)
- \rightarrow Un ou plusieurs oxydes modificateurs (oxydes alcalins, alcalino-terreux....)
- \rightarrow Un ou plusieurs oxydes intermédiaires (Al₂O₃, Ga₂O₃, TiO₂...)
- \rightarrow Un ou plusieurs oxydes avec cations à force de champ élevée (ZrO₂, MoO₃...)
- \rightarrow TR₂O₃ (TRO₂) en concentration faible (dopant) ou élevée (oxyde majeur)

(TR séparées ou en mélange)

Pourquoi s'intéresser aux terres rares dans les verres silicatés complexes?

Existence de nombreux exemples pratiques de verres d'intérêt industriel de complexité variable contenant des TR (verres d'optique, verres de confinement) et pour lesquels il est important de comprendre:

- le rôle structural des TR dans ces verres

→ la façon dont elles s'incorporent dans le réseau vitreux (environnement, distribution)

 \rightarrow leur effet sur la structure de ce réseau

- les relations composition-structure-propriétés

Afin d'optimiser la composition de ces verres:

- pour les applications (ex: luminescence)
- pour leur élaboration (ex: risques de cristallisation)

Rôle de TR₂O₃ dans les verres silicatés

Dans la silice et les silicates: rôle de modificateur (apport O²⁻ et création de NBOs: cf XPS, RMN, Raman, DM (association préférentielle avec NBOs)): Réaction acido-basique

Nice 10-11 septembre 2012

Généralités sur les Terres Rares dans les déchets et les verres nucléaires

Les TR dans les déchets: une proportion importante

Principales familles de Produits de Fission (PF) dans du combustible nucléaire usagé UO₂ initialement enrichi à 3.5% ²³⁵U

Famille chimique	masse (kg/U)	
Alcalins (Cs, Rb)	3	$\approx 30\%$ de la masse totale des PF
Alcalino-terreux (Sr, Ba)	2,4	
Terres Rares	10,2	Verre nucléaire
Métaux de transition (Mo, Zr, Tc)	7,7	
Chalcogènes (Se, Te)	0,5	
Halogènes (I, Br)	0,2	
Platinoïdes (Ru, Rh, Pd)	3,9	
Autres (Ag, Cd, Sn, Sb)	0,1	and the second s

Objectifs des matrices vitreuses de confinement: ⇒ Immobiliser durablement les AM et PF en les solubilisant au sein du réseau vitreux

Calcinat

Fritte de verre

(verres durables chimiquement et résistants à l'auto-irradiation)

Les TR dans les déchets: un mélange complexe

Inventaire des principaux isotopes radioactifs et non-radioactifs de lanthanides présents dans du combustible nucléaire UOX1 usé (33 GW.jour.t⁻¹ dans Rep, 3 ans après déchargement)

	Lanthanides	Total weight (g/t U)	Radioactive isotopes	Weight of radioactive isotope (g/t U)	Half-live
/	La	1205	stable	-	-
	Ce	2352	¹⁴⁴ Ce	23.37	284.3
					days
	Pr	1109	stable	-	-
	Nd	4000	stable	-	-
	Pm	85.88	147 Pm	85.88	2.62 years
	Sm	777.2	151 Sm	15.99	93 years ┥
	E.,	122.2	¹⁵⁴ Eu	19.5	8.6 years
	Eu	155.2	¹⁵⁵ Eu	12.4	4.8 years
	Gd	76	stable	-	-

Les terres rares de début de série (i.e. les plus « grosses ») sont les plus abondantes

Les TR dans les déchets: Risques de cristallisation lors du refroidissement de la fonte

colis de verre de confinement (400 Kg)

Si fortes teneurs en TR: Si incorporation d'actinides \rightarrow risques de cristallisation de phases riches en TR (ex: apatite Ca₂TR₈(SiO₄)₆O₂)

Atelier Terres Rares Nice 10-11 septembre 2012 (radionucléides α) dans ces phases

(risques de gonflement accompagné de fissuration)

Des compositions très complexes...

	Oxides	wt%
	Glass frit introduced with the ca	alcine
	SiO ₂	45.12
	Al_2O_3	4.92
	B_2O_3	13.92
	Na ₂ O	10.06
	CaO	4.01
	Li ₂ O	1.96
	ZnO	2.49
	ZrO ₂	1.01
	Fission products	
	ZrO ₂	1.70
	SrO	0.34
	Y_2O_3	0.20
	MoO_3	1.75
	TcO ₂	0.38
	Ag ₂ O	0.03
	CdO	0.03
	SnO ₂	0.02
	SeO ₂	0.03
	TeO ₂	0.20
	Rb ₂ O	0.13
	Cs ₂ O	0.97
	BaQ	0.61
1	Ce ₂ O ₃	0.95
	Pr ₂ O ₃	0.45
1	Nd_2O_3	1.63
	La_2O_3	0.49
	Pm ₂ O ₃	0.03
	Sm ₂ O ₃	0.32
1	Eu ₂ O ₃	0.05
	Gd ₂ O ₃	0.03
	RuO_2	0.99
	Rh ₂ O ₃	0.17

Oxides	wt%
Fission products	
Pd	0.43
Additional elements	and corrosion products
Fe ₂ O ₃	2.98
NiO	0.42
Cr ₂ O ₃	0.52
P ₂ O ₅	0.29
Actinides	
UO ₂	0.06
NpO ₂	0.17
PuO ₂	0.0025
AmO ₂	0.13
CmO ₂	0.01

Composition du verre R7T7 produit à La Hague

Plus d'une quarantaine d'oxydes ! ⇒ Nécessité de travailler sur une composition non radioactive et simplifiée pour les études structurales

Les TR dans les verres aluminoborosilicatés versions simplifiées de verres d'intérêt nucléaire:

> Etude structurale et cristallisation (collaboration CEA Marcoule)

Effets de changements de composition sur la structure d'un verre modèle non-radioactif à 7 oxydes (version simplifiée d'un verre nucléaire riche en TR)

Verre A	SiO ₂	B_2O_3	Al ₂ O ₃	Na ₂ O	CaO	ZrO ₂	
mol%	61.82	8.94	3.05	14.41	6.33-	1.89	3.56 (16.35 wt% Nd)

Température de fusion ≈ 1300°C

Composition peralcaline

Etude de l'impact de changements de composition : $[TR_2O_3], [Al_2O_3], (nature TR, [CaO]/[Na_2O], [B_2O_3])$

- Sur l'environnement des TR (Nd³⁺) et sur la structure du verre mettant en œuvre une approche multispectroscopique:
- Absorption optique + EXAFS (RE = Nd)
- Raman
- ¹¹B, ²⁷Al, ²⁹Si, ²³Na MAS NMR (RE = La)
- Comparaison avec des verres simples de référence (Nd, Al, Na)

Sur la cristallisation de la fonte au refroidissement (corrélation avec la structure des verres)

Effet de la teneur en TR₂O₃ sur la structure du verre et l'environnement des ions TR³⁺ Solubilité des ions TR³⁺

RE₂O₃ agit comme un oxyde modificateur sur le réseau silicaté, (dépolymérisation): accord littérature (DM, XPS)

Rôle de modificateur de TR₂O₃ dans les verres silicatés simples (RMN ²⁹Si)

Localisation des cations Nd³⁺ au sein du réseau vitreux

Comparaison à des verres modèles simples de référence contenant des cations Nd³⁺

Verres	Composition (mol%)
Na-silicate	74,38 SiO ₂ – 21,29 Na ₂ O – 4,33 Nd ₂ O ₃
Nd aluminosilicate	75 SiO ₂ - 15 Al ₂ O ₃ - 10 Nd ₂ O ₃
Na-poor borate	79 B ₂ O ₃ - 20 Na ₂ O - 1 Nd ₂ O ₃
Na-rich borate	64 B ₂ O ₃ - 35 Na ₂ O - 1 Nd ₂ O ₃
Nd metaborate	75 B ₂ O ₃ - 25 Nd ₂ O ₃

Etude de l'environnement des cations TR³⁺ (EXAFS Nd, seuil L_{III})

Etude de l'environnement des cations TR³⁺ (EXAFS Nd, seuil L_{III})

Faible évolution de la distance Nd-O mais plus de désordre (distribution plus grande de distances quand la concentration en Nd augmente)

Etude de l'environnement des cations TR³⁺ (absorption optique Nd³⁺)

Etude de l'environnement des cations TR³⁺ (absorption optique Nd³⁺)

Etude de l'environnement des cations TR³⁺ (absorption optique Nd³⁺)

Les cations Nd³⁺ seraient principalement localisés dans des régions dépolymérisées près de NBOs et de cations Na⁺ et Ca²⁺

Connexion préférentielle des cations TR³⁺ aux NBOs dans les verres de silicates alcalins (DM Er³⁺)

Name	Composition (mol%)					
	Compos Er ₂ O ₃ 1 1 1 1 2	Na ₂ O	SiO ₂			
Ess1	1	0	99			
Enss10	1	10	84			
Enss20	1	20	79			
Enss30	1	30	69			
E2nss30	2	30	68			

Du et al. JNCS (2005)

Bilan sur l'environnement local des ions Nd³⁺

Environnement de Nd assez

bien défini

- Coordinence ≈7

- Nd lié à des NBOs

- Connections par les sommets

 Présence de Na et Ca dans l'environnement de Nd (compensation de charge)

Pour se « dissoudre » sous forme de polyèdres isolés dans le réseau vitreux (1 ion Nd³⁺) 7 NBOs nécessaires: 3 NBOs (Nd₂O₃) 4 NBOs (Na₂O, CaO)

4 moles de (Na₂O + CaO) sont nécessaires pour permettre de « dissoudre » 1 mole de Nd₂O3

Effet de la teneur en Al₂O₃ sur l'environnement et la solubilité des ions TR³⁺ et la structure du verre

Verre A	SiO ₂	B ₂ O ₃	Al ₂ O ₃	Na ₂ O	CaO	ZrO ₂	TR ₂ O ₃	
mol%	61.82	8.94	3.05	14.41	6.33	1.89	3.56 (16.35 wt% Nd)	

$R = 100.([Na_2O]+[CaO]) / ([Na_2O]+[CaO]+[Al_2O_3])$

de R=100 à R=35

	mol%	SiO ₂	B ₂ O ₃	Al ₂ O ₃	Na ₂ O	CaO	ZrO ₂	Nd ₂ O ₃	Composition
	R100	61.81	8.94	0	16.54	7.26	1.89	3.56	
\langle	R87	61.81	8.94	3.05	14.41	6.33	1.89	3.56	peralcaline (R>50)
	R75	61.81	8.94	5.95	12.40	5.44	1.89	3.56	
	R50	61.81	8.94	11.90	8.27	3.63	1.89	3.56	metalumineuse (R=50)
	R35	61.81	8.94	15.47	5.79	2.54	1.89	3.56	peralumineuse (R<50)
	Ve	nno A							-

Etude de l'environnement des cations Nd³⁺ (optique)

Etude de l'environnement de Al (27Al MAS NMR)

TR = La

Evolution de la connexion des cations TR³⁺ aux NBOs et BOs dans les verres SiO₂-Na₂O-CaO-Al₂O₃ (DM Er³⁺)

Etude de la distribution des cations Nd³⁺ (luminescence)

La₂O₃ + 0,15% Nd₂O₃

temps de vie intégré

Conclusions

 Les cations TR³⁺ agissent comme des modificateurs (formation de NBOs) (TR₂O₃ basique)

 Les cations TR³⁺ sont préférentiellement localisés dans des régions dépolymérisées du réseau silicaté (i.e. regions riches en NBOs produits par Na⁺ et Ca²⁺), pas metaborate. Nécessité de compensation de charge locales suffisante (sinon ↓ solubilité: cristallisation phase riche en TR).

 Les cations TR³⁺ rentrent en compétition avec le bore (mais pas avec l'aluminium) pour leur compensation de charge avec les cations Na⁺ et Ca²⁺.
Présence de bore possible dans l'environnement des TR³⁺ (à préciser).

- L'augmentation de la **teneur en Al₂O₃ a un fort impact** à la fois sur:
 - la structure du réseau (↓NBOs, ↓BO₄)
 - l'environnement des cations TR³⁺ (évolution du rôle structural de modificateur à compensateur de charge des unités AlO₄)
 - la tendance à la séparation de phase et à la cristallisation de la fonte (augmentation de la solubilité des TR pour les compositions peralumineuses)

Remerciements

CEA Marcoule pour sa contribution à ces études Etudiants en thèse (I. Bardez-Giboire, A. Quintas) Odile Majérus (LCMCP Chimie-ParisTech) Thibault Charpentier (CEA Saclay)