

ICG Spring School 2024 « Glass for a sustainable future » – May 1st 2024 – Lloret del Mar (Spain)

Self-healing high-temperature functional glass for hydrogen fuel cell sealing

François O. MÉAR

PhD: Raphaël VOIVENEL (ANR CELCER EHT), Daniel COILLOT (ULille), Sandra CASTANIÉ (DGA) Renaud PODOR (CEA-ICSM), Lionel MONTAGNE (ULille)

- ✓ Glass-sealant for SOFC/SOEC technology: state of the art (SOFC: Solid Oxide Fuel Cell / SOEC: Solid Oxide Electrolysis Cell)
- ✓ Self-healing: background definition
- ✓ Non-autonomous & autonomous self-healing concepts
- ✓ <u>Applications</u>: self-healing in glassy sealant
 - ✓ Non-autonomous self-healing processing in viscous seal
 - ✓ Autonomous self-healing concept for rigid seal
- ✓ Conclusions

Comparison of fuel cell technologies

Fuel Cell Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Challenges
Polymer Electrolyte Membrane (PEM)*	Perfluoro sulfonic acid	50-100°C 122-212°F typically 80°C	1 kW-100 kW	60% transportation 35% stationary	 Backup power Portable power Distributed generation Transportation Specialty vehicles 	 Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up 	 Expensive catalysts Sensitive to fuel impurities Low temperature waste heat
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10-100 kW	60%	• Military • Space	Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components	 Sensitive to CO₂ in fuel and air Electrolyte management
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	 Distributed generation 	Higher temperature enables CHP Increased tolerance to fuel impurities	 Pt catalyst Long start up time Low current and power
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/or potassium carbonates, soaked in a matrix	600-700°C 1112-1292°F	300 kW-3 MW 300 kW module	45-50%	 Electric utility Distributed generation 	 High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP 	 High temperature corrosion and breakdown of cell components Long start up time Low power density
Solid Oxide (SOFC)	Yttria stabilized zirconia	700-1000°C 1202-1832°F	1 kW-2 MW	60%	Auxiliary power Electric utility Distributed generation	High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte Suitable for CHP & CHP Hybrid/GT cycle	High temperature corrosion and breakdown of cell components High temperature operation requires long start up time and limits

"Direct Methanol Fuel Cells (DMFC) are a subset of PEM typically used for small portable power applications with a size range of about a subwatt to 250 W and operating at 60-90°C.

Comparison of fuel cell technologies

Fuel Cell Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Challenges
Polymer Electrolyte Membrane (PEM)*	Perfluoro sulfonic acid	50-100°C 122-212°F typically 80°C	1 kw-100 kw	60% transportation 35% stationary	Backup power Portable power Distributed generation Transportation Specialty vehicles	 Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up 	 Expensive catalysts Sensitive to fuel impurities Low temperature waste heat
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10-100 kW	60%	Military Space	 Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components 	 Sensitive to CO₂ in fuel and air Electrolyte management
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	Distributed generation	Higher temperature enables CHP Increased tolerance to fuel impurities	 Pt catalyst Long start up time Low current and power
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/or potassium carbonates, soaked in a matrix	600-700°C 1112-1292*F	300 kW-3 MW 300 kW module	45-50%	 Electric utility Distributed generation 	 High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP 	 High temperature corrosion and breakdown of cell components Long start up time Low power density
Solid Oxide (SOFC)	Yttria stabilized zirconia	700-1000°C 1202-1832°F	1 kW-2 MW	60%	 Auxiliary power Electric utility Distributed generation 	High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte Suitable for CHP & CHHP Hybrid/GT cycle	 High temperature corrosion and breakdown of cell components High temperature operation requires long start up time and limits

*Direct Methanol Fuel Cells (DMFC) are a subset of PEM typically used for small portable power applications with a size range of about a subwatt to 250 W and operating at 60-90°C.

- SOFCs are made up of very thin layer of ceramics.
- Ceramics used in SOFCs do not become electrically and ionically active until they reach 500-1000°C and the high temperature enables them to oxidize nearly any fuel.
- Solid electrolyte is made from a ceramic material called Yttria-Stabilized Zirconia (YSZ).
- > Best suited for large applications although research continues to develop lower temperature SOFCs for use in vehicles.

Solid Oxide Electrolysis Cell (SOEC)

Solid Oxide Fuel Cell (SOFC)

<u>Anode reaction</u>: $O^{2-} \rightarrow \frac{1}{2}O_2 + 2e^-$ <u>Anode reaction</u>: $H_2 + O^{2-} \rightarrow H_2O + 2e^-$

Requirements of a SOFC/SOEC seal

Properties	Requirements
Thermal properties	 Thermal expansion coefficient at 9.5 – 12.0 × 10⁻⁶ °C⁻¹ Thermally stable ~ 5,000h for mobile applications and for ~ 50,000h for stationary applications at 650-900°C cell operating temperatures
Chemical properties	 Resistant to vaporization and compositional change in stringent oxidizing and wet reducing atmospheres at 650-900°C Limited or no reaction with other cell components
Mechanical properties	 Withstand external static and dynamic forces during transportation and operation Resistant to thermal cycling failure during start-up and shut-down of cell stacks
Electrical properties	- Electrical resistivity \geq 10 ⁴ Ω .cm at operating temperature - Electrical resistivity greater than 500 Ω .cm between cells and stacks at nominal stack operating condition (0.7 V at 500-700 mA/cm ²)
Sealing ability	 Sealing load < 35 kPa Withstand differential pressure up to 14-35 kPa across a cell or stack Total fuel leakage < 1% for the duration of the cell life
Fabrication flexibility	- Flexible design, low processing cost, and high reliability

Advantages & disadvantages of different types of seals

Seal type	Advantages	Disadvantages
Compressive seal	Easy replacement of seals in a manufacturing cell stack Resistance to thermal cycling	Application of external load Complex design and high cost High gas leakage rate Unsuitable for mobile applications Poor stability Electrically conductive
Viscous seal	Low thermal cycle	Non-wetting with other SOFC/SOEC components Poor oxidation resistance Hydrogen embrittlement Electrically conductive
Rigid seal	 Hermetic sealing Tailoring performance by composition design High electrical resistivity Suitable for stationary and mobile applications Flexible in design and fabrication 	Brittle at low temperatures \rightarrow poor resistance to thermal cycling Chemical reaction with other cell components

Functions of different oxide in a seal glass

Glass constituent	Oxide	Function
Network former	SiO ₂ , B ₂ O ₃	Form glass network Determine T _g and T _s Determine thermal expansion coefficient Determine adhesion/wetting with other SOFC/SOEC components
Network modifier	Li ₂ O, Na₂O , K ₂ O BaO, SrO, CaO, MgO	Maintain charge neutrality Create non-bridging oxygen species Modify glass properties such as T _g , T _s and thermal expansion coefficient
Intermediate	Al₂O₃ , Ga ₂ O ₃	Hinder devitrification Modify glass viscosity
Additive	La ₂ O ₃ , Nd ₂ O ₃ , Y ₂ O ₃ ZnO, PbO NiO, CuO, CoO, MnO Cr_2O_3 , V ₂ O ₅ TiO ₂ , ZrO ₂ , P ₂ O ₅	Modify glass viscosity Increase thermal expansion coefficient Improve glass flowability Improve seal glass adhesion to other cell components Induce devitrification

Constituents evolution in glass seal

Two important criteria for selection of a suitable glass sealant :

 \Rightarrow glass transition temperature, T_g (because of the glass must flow sufficiently to provide an adequate seal, while maintaining sufficient rigidity for mechanical integrity)

 \Rightarrow coefficient of thermal expansion, CTE (must match other cell components electrolyte and the interconnect material, to minimize thermal stresses)

Application: self-healing in glassy sealant

Degradation of components

- Degradation of single cell
- Degradation of sealing
- Oxidation of interconnects
- Degradation of contact resistances
- Interaction between
 - Glass / interconnect
 - Interconnect / cell
 - Contact layer / interconnect
 - Contact layer / cell

Key points:

Design/System specific degradation

- Formation of hot-spots
- Inhomogeneous fuel gas distribution / utilization
- Soot formation
- Degradation due to unfavorable stack

integration into system

> Degradation due to unfavorable stackpreload (especially for IC-cassettes from pressed ferritic steel)

- long term chemical stability
 - stability against crystallization, control of phase formation
 - mechanical stability (prevent crack formation)

Application: self-healing in glassy sealant

Degradation of components

- Degradation of single cell
- Degradation of sealing
- Oxidation of interconnects
- Degradation of contact resistances
- Interaction between
 - Glass / interconnect
 - Interconnect / cell
 - Contact layer / interconnect
 - Contact layer / cell

Design/System specific degradation

- Formation of hot-spots
- Inhomogeneous fuel gas distribution / utilization
- Soot formation
- Degradation due to unfavorable stack

integration into system

➢ Degradation due to unfavorable stackpreload (especially for IC-cassettes from pressed ferritic steel)

Key points:

- long term chemical stability
- stability against crystallization, control of phase formation
- mechanical stability (prevent crack formation)

Self-healing is proposed as a solution to decrease gas leaks due to cracks

Self-healing: background

From J.P. Youngblood, MRS Bull. 2008

(a) Schematic of an intermediate stage of biological wound healing in skin(b) Demonstration of bio-inspired damage-triggered release of a microencapsulated healing agent in a polymer

Self-healing: background

From J.P. Youngblood, MRS Bull. 2008

(a) Schematic of an intermediate stage of biological wound healing in skin(b) Demonstration of bio-inspired damage-triggered release of a microencapsulated healing agent in a polymer

(i) Cracks form in the matrix wherever damage occurs.

(ii) The crack ruptures the microcapsules, releasing the healing agent into the crack plane through capillary action.

(iii) The healing agent contacts the catalyst, triggering polymerization that bonds the crack faces closed.

From S.R. White et al., Nature 2001

<u>Self-healing material</u>: material able to heal (repair) automatically and autonomously damages occurring during processing.

Thus, self-healing can be of the following two types :

→ **autonomous**: without any intervention

→ **non-autonomous**: needs human intervention / external triggering

Numerous field of applications:

- \circ polymers
- o composites materials for aerospace applications
- o microelectronic packaging
- medical uses
- \circ concrete or cementitious structures

Non-autonomous self-healing: glassy seal

Fig. 4. Self-bealing behavior of glass B indicating several stages of self-bealing of cracks introduced by the microindentation technique $(\times 400)$ magnification.

From R.N. Singh, Appl. Ceram. Techno. 2007

Non-autonomous self-healing: glassy seal

disappearance of damage due to the flow of the glass phase after heating at high operating temperature

From S.K. Ghosh, Self Healing Materials: Fundamentals, Design Strategies and Applications, Willey-VCH 2009

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

→ Limited interactions with other components of electrochemical systems

Selection criteria (Sciglass software)

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹
- \rightarrow Limited amount of P₂O₅

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

→ Limited interactions with other components of electrochemical systems

Selection criteria (Sciglass software)

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹

 \rightarrow Limited amount of P₂O₅

ſ	Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al ₂ O ₃	Ga_2O_3	La ₂ O ₃	$\mathbf{Y}_{2}\mathbf{O}_{3}$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	$T_g / °C$
	Vsc1	70.24	H 0	1.92	5.26	. .	-	19 0	3.60	1.19	0.60	3.32	9.05	4.82	æ	Yes	650
	Vsc2	63.30	, .	-	-	0	-	4.99	20.72	6.81	4.45	-	11 12	-	3 8 6	Yes	566
	Vsc3	67.46	13.34	. =		877	1.03	 9	13.67	4.50	877	i n s	 9	-	8 2 1	No	765
	Vsc4	61.39	, ()	6.14	8 8	14.34		577(J)	13.67	4.46			177()			No	580
_	Vsc5	66.01	3.43	5.57	4.21		-	(3 3	2.16	0.71	12.21	-	6 3	8	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

→ Limited interactions with other components of electrochemical systems

Selection criteria (Sciglass software)

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹

 \rightarrow Limited amount of P₂O₅

Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al_2O_3	Ga_2O_3	La ₂ O ₃	$\mathbf{Y}_2\mathbf{O}_3$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
Vsc1	70.24	1 0	1.92	5.26	(#(1 00	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
Vsc2	63.30	17 10			(1 2 15	a n si	4.99	20.72	6.81	4.45	and a	1 10		3 5	Yes	566
Vsc3	67.46	13.34	. =		i n t	1.03	 5	13.67	4.50	8771	178	 13		() , , (No	765
Vsc4	61.39	978(l)	6.14	85	14.34		<u>8</u> -30	13.67	4.46	1977		1750)			No	580
Vsc5	66.01	3.43	5.57	4.21				2.16	0.71	12.21		83	2	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C
- → Limited interactions with other components of electrochemical systems

Selection criteria (Sciglass software)

- \rightarrow T_g > 600°C
- \rightarrow 750°C < T_{Littleton} < 900°C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹

 \rightarrow Limited amount of P₂O₅

Mola	r %	SiO2	ZrO ₂	B ₂ O ₃	Al_2O_3	Ga_2O_3	La ₂ O ₃	$\mathbf{Y}_2\mathbf{O}_3$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
Vso	:1	70.24	HO	1.92	5.26	(#(1 00	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
Vsc	:2	63.30	i n ul	-		(1996	3 7 5	4.99	20.72	6.81	4.45	3 .	n a	-	-	Yes	566
Vso	:3	67.46	13.34	. =		8 1	1.03	 ::	13.67	4.50	877		 5	-	())	No	765
Vso	:4	61.39	$\lim_{t\to\infty} \frac{1}{t} \left(\int_{t}^{t} f(t) \right)$	6.14	85	14.34		<u>8</u> -30	13.67	4.46			#30			No	580
Vso	:5	66.01	3.43	5.57	4.21		-	[1 5]	2.16	0.71	12.21	-		5	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

Objective decrease of thermal characteristics

 \rightarrow ZrO₂ substituted by SiO₂ and/or B₂O₃

Molar %	SiO ₂	ZrO ₂	B ₂ O ₃	La ₂ O ₃	Na ₂ O	K ₂ O	Crystallisation	T _g / °C	T _s / °C
Vsc3	67.46	13.34	-	1.03	13.67	4.50	No	765	854
Vsc31	64.52	7.09	10.03	0.99	13.07	4.30	No	616	675
Vsc32	69.78	7.03	4.98	0.98	12.97	4.27	No	630	692
Vsc33	74.95	6.97	-	0.97	12.87	4.23	No	610	675
Vsc34	65.96	10.14	5.13	1.01	13.36	4.40	No	668	750

Hot-stage microscopy (HSM): apparatus

Hot-stage microscopy curves

Fixed viscosity points vs. models

Viscosity points	Scholze ⁽⁵⁾ $\log \eta \pm \sigma$ (P)	Pascual et al ⁽⁴⁾ $\log \eta \pm \sigma$ (P)	This work $\log \eta \pm \sigma$ (P)
First shrinkage	10.0±0-3	8.9±0.25	9·1±0·1
Maximum shrinkage	8.2±0-5	7·9±0·2	7.8±0.1
Deformation	6.1±0.2	6.6±0.1	6·3±0·1
Sphere		C. C	5.4±0.1
Half ball	4.6±0.1	4.5±0.1	4.1±0.1
Flow	4·1±0·1	3·1±0·15	3·4±0·1
			1
	qualita	ative	quantitative

From Pascual et al., Phys. Chem. Glasses 2005

Example: Schott 8422

HSM measurements: *wettability*

 \rightarrow Is the viscosity low enough to allow the seal forming at 900°C ?

→ Heat treatment: 10h at 900°C

HSM measurements: *wettability*

 \rightarrow Is the viscosity low enough to allow the seal forming at 900°C ?

→ Heat treatment: 10h at 900°C

• Castaing microprobe observations

CROFER[®]22APU

• Castaing microprobe observations

Si

Cr

In situ observation of crack healing

In situ observations by HT-ESEM

		Start of healing	End of healing
Vsc32 / Air	Temperature / °C	670	755
	Viscosity / Poise	11.05	8.91

In situ observation of crack healing

In situ observations by HT-ESEM

		Start of healing	End of healing
Vsc32 / H ₂ O	Temperature / °C	670	745
. 2	Viscosity / Poise	11.38	9.27

 \Rightarrow observation of multiple areas of crack pinch-off along the length of the crack

From Méar et al., Taylor & Francis 2011

 \Rightarrow mathematical model for the description of the kinetics of each stage of the self-healing process. This model allows predicting the time necessary for crack healing, for a given glass composition and operating temperature, using a time coefficient t_c defined as:

$$t_c = K.\eta$$

 \Rightarrow where η is the glass viscosity at the healing temperature and K a constant that depends on glass composition, t_c is related to the softening point (T_s)

 \Rightarrow time t necessary for healing a crack of length L is expressed as:

 $\ln L = t_c.t$

From Méar et al., Taylor & Francis 2011

 \Rightarrow mathematical model for the description of the kinetics of each stage of the self-healing process. This model allows predicting the time necessary for crack healing, for a given glass composition and operating temperature, using a time coefficient t_c defined as:

Self-healing theoretical mechanism

$$t_c = K.\eta$$

 \Rightarrow where η is the glass viscosity at the healing temperature and K a constant that depends on glass composition, t_c is related to the softening point (T_s)

 \Rightarrow time t necessary for healing a crack of length L is expressed as:

$$\ln L = t_c.t$$

- healing kinetics strongly depend on healing temperature
- healing rate is very low when the operating temperature is lower than the softening point

- $\Rightarrow~$ relationship between softening temperature and healing temperatures
- ⇒ sets of data reported, concordant and yield to the conclusion that the healing temperature of glasses is very close to the softening temperature
- \Rightarrow self-healing can be obtained over a large range of temperatures, depending on glass composition

From Méar et al., Taylor & Francis 2011

Leak test of Vsc32 glass

Schematic representation of a SOEC stack. Insert is highlighting interconnections ceramic-ceramic and ceramic-metal

Requirements

- Operating temperature : 800°C
- T_{max} acceptable : \approx **900°C**
- Working pressure : **300 mbar** → **3 bars**
- Atmospheres : O₂ and H₂/H₂O
- Materials : different thermal expansion coefficients

```
Metals : \alpha_{20-700} = 14.8 \times 10^{-6} \text{ K}^{-1} (Haynes)

\alpha_{20-700} = 11.2 \times 10^{-6} \text{ K}^{-1} (Crofer)

Ceramics: \alpha_{20-700} = 10.8 \times 10^{-6} \text{ K}^{-1} (YSZ)
```

• Leak rate : **10**⁻³ **Pa.m**³.s⁻¹

T = 800°C		
Metallic		
H ₂ O	loint	0
H₂	Joint	02
Ceramic		

Ceramic YSZ Electrolyte

> The production of high quality hermetic seals is essential to the long-term performance and reliability of SOECs

From Coillot et al., Int. J. Hydrogen. Energy 2012

Self-healing glassy materials: concept

Autonomous self-healing glassy materials

Autonomous self-healing glass matrix upon occurrence of cracks

→ Crack formation into the composite during operation

→ Contact of O₂ contained into atmosphere with some active particles leading to their oxidation

→ Formation of fluid oxides capable to flow into the crack and to fill it

From Coillot et al., Patent WO 2010/136721 A1

Autonomous self-healing glassy materials

Autonomous self-healing glass matrix upon occurrence of cracks

From Coillot et al., Patent WO 2010/136721 A1

- stable at working temperature in the absence of air
- > oxidize rapidly in the presence of air
- oxides must be fluid at the working temperature

S Healing agent selectivity: VB

Healing agent selectivity: VB

Sealing glass composition: 28.6 BaO – 14.3 CaO – 9.5 Al_2O_3 – 47.6 SiO₂

Autonomous self-healing glass matrix upon occurrence of cracks

2D in situ observation by environmental microscopy (at 700°C in air)

In situ observation of crack healing

Fresh Crack

Environmental microscopy (HT-ESEM)

<u>Conditions</u>: 700°C, P₀₂ = 450Pa

Isothermal treatment at 700°C in air:

 \rightarrow

oxidation of VB particles and formation of V_2O_5 and B_2O_3

Ex situ observation of crack healing

Autonomous self-healing glass matrix upon occurrence of cracks

2D in situ observation by environmental microscopy (at 700°C in air)

3D observation by nanotomography (ID22, ESRF)

Ex situ observation of crack healing

X-ray nano-tomography image reconstitution of a crack throughout the material

X-ray nano-imaging (ID22NI)

Ex situ observation of crack healing

X-ray nano-tomography image reconstitution of a crack throughout the material

X-ray nano-imaging (ID22NI)

Leak test: *experimental device*

Maxi weight supported by the oven : 50 kg

Maxi pressure : 340 mbars

Self-healing efficiency test

Self-healing efficiency test

 ✓ Development of self-healing glassy material concept at macro-scale for high temperature applications

✓ Synthesis and physico-chemical characterization of glassy matrix for fuel cell

✓ Self-healing is an option to increase materials lifetime
 → Application: glassy-ceramic sealing for SOEC / SOFC

UCCS Les projets ciblés du PEPR-H2

Production d'hydrogène

CELCER-EHT : Cellules Céramiques EHT durables, performantes et bas coûts

PROTEC : Développement de cellules d'électrolyse à base de céramiques à conduction protonique

Stockage de l'hydrogène

SOLHyd : Stockage solide de l'hydrogène: nouvelles stratégies, nouveaux matériaux

HYPERTSTOCK: Stockage hyperbare de l'hydrogène: référentiel et méthodologies matériaux

Conversion de l'hydrogène

FLEXISOC: Flexibilité des cellules SOC vis-à-vis du combustible

PEMFC95: Développement d'une cellule de PEMFC capable de fonctionner durablement à 95°C

DURASYS-PAC: Durabilité et Résilience des Systèmes Piles à Combustible

THANK YOU FOR YOUR KIND ATTENTION

THANK YOU FOR YOUR KIND ATTENTION

