

Séparations de phases et cristallisation dans les verres : vers des vitrocéramiques transparentes.

S. Chenu¹⁻², E. Véron², C. Genevois², G. Matzen², T. Cardinal³, M. Allix²

1 - SPCTS : UMR CNRS 7315 - Université de Limoges

- 2 CEMHTI : UPR CNRS 3079 Orléans
- 3 ICMCB : UPR CNRS 9048 Bordeaux

sebastien.chenu@unilim.fr

Un matériau vitrocéramique est élaboré par une cristallisation partielle et contrôlée du verre.

Système MAS ($MgO-Al_2O_3-SiO_2$) + TiO_2

- Vitrocéramiques de cordiérite (Mg₂Al₄Si₅O₁₈)
- Faible CTE, résistance abrasion, transparence ondes radar

 \Rightarrow **Radômes** de missile balistique

Système LAS $(Li_2O-Al_2O_3-SiO_2) + TiO_2/ZrO_2$

- Vitrocéramiques de s.s. β -quartz
- Faible CTE, transparence domaine visible
 - \Rightarrow Ustensiles de cuisine
 - ⇒Miroirs géants pour télescopes

D. Neuville et al. edp sciences "Du verre au cristal " (2013)

Maîtrise des processus de cristallisation / microstructure 📃

(Mar

Contrôle des propriétés de transparence

Evolution vers des produits grand public :

- Plaques de cuisson (transparence IR)
- Vitres de cheminées/fours
- Portes anti feu
- Prothèses dentaires
- Matériaux d'architecture

D. Neuville et al. edp sciences "Du verre au cristal " (2013)

Maîtrise des processus de cristallisation / microstructure

Contrôle des propriétés de transparence

Evolution vers des produits grand public :

- Plaques de cuisson (transparence IR)
- Vitres de cheminées/fours
- Portes anti feu
- Prothèses dentaires
- Matériaux d'architecture

D. Neuville et al. edp sciences "Du verre au cristal" (2013)

Challenges actuels

- **Transparence parfaite** \Rightarrow applications **photoniques**, fibres...

1 state

- Fort taux de cristallisation
- Nouveaux matériaux avec de nouvelles propriétés...

A. Bertrand et al. Adv. Opt. Mater. (2016)

Y. Ledemi et al. J. Mat. Chem. C (2012)

Challenges à surmonter lors de la cristallisation : 1) Contrôle de la taille des cristaux

2) Préservation de la transparence

Comment obtenir des nano-cristaux dans du verre? Cemht

Comment obtenir des nano-cristaux dans du verre? Cemht

5

L'ajout de **fluorures** à un verre d'oxydes peut engendrer une <mark>séparation de phases</mark> et ainsi permettre une **cristallisation maitrisée** du **verre.**

Système Na₂O-Al₂O₃-SiO₂-LaF₃

- ✓ Séparation de phases dans le verre parent
- ✓ Ségregation des dopants (RE) dans les nanocristaux fluorés

Limitation de la taille des cristaux (~10-30nm)

L'ajout de **fluorures** à un verre d'oxydes peut engendrer une séparation de phases et ainsi permettre une cristallisation maitrisée du verre.

Système Na₂O-Al₂O₃-SiO₂-LaF₃

- Séparation de phases dans le verre parent
- Ségregation des dopants (RE) dans les nanocristaux fluorés

Limitation de la taille des cristaux (~10-30nm)

Système CaO-Al₂O₃-SiO₂-CaF₂

Si-enriched glassy residue LaF₃ crystals

Al-enriched

glass matrix

La-, and Si

enriched phaseseparation droplets

- ✓ Verre parent "non démixé"
- ✓ Cristaux de CaF_2 (~15nm)

✓ Luminescence exacerbée

D. Chen et al. Mat. Sc. Eng. B (2005)

B.R. Wheaton et al. JNCS (2007)

A. De Pablos et al. Inter. Mater. Reviews (2012)

S. Bhattacharyya et al. JNCS (2009)

Recherche de vitrocéramiques transparentes et présentant de la luminescence persistante

Système vitreux ZnO - Ga₂O₃ - GeO₂

Système vitreux ZnO - Ga₂O₃ - GeO₂

Verres nanostructurés : effet du sodium

Processus de cristallisation

Processus de cristallisation

Taille des cristaux limitée et contrôlée par la taille de la séparation de phases

Matériaux nanostructurés transparents

Large variété de compositions nanostructurées

Cemht

Propriétés et applications optiques modulables (imagerie médicale, amplificateur optiques)

Processus de cristallisation

✓ **Pas de cristallisation de la matrice**

Processus de cristallisation

Cristallisation : $55SiO_2$ - $5Na_2O$ -17ZnO- $23Ga_2O_3$

Ga

Si

Mécanismes de cristallisation

✓ Nucléation

- ✓ Croissance cristalline
- ✓ Coalescence

Transparence et microstructure

Transparence et microstructure

Cembi Vitrocéramiques : une luminescence rouge persistante

- Contrôle de la microstructure \Rightarrow Design de vitrocéramiques avec des propriétés remarquables
- *Nouvelles vitrocéramiques nanostructurées* et transparentes obtenues par la maîtrise des séparations de phases présentes dans le verre parent.
- La nature et la taille de la nanostructuration du matériau final peuvent être contrôlées.
- Traitement thermique de cristallisation en une seule étape.

Perspectives

- Développement de nouvelles vitrocéramiques transparentes.
- Mise en forme de ces matériaux sous formes de fibres (ANR Focal Xlim)

Merci de votre Attention

sebastien.chenu@unilim.fr