

Simulation par dynamique moléculaire du comportement des verres silicatés sous irradiation

J.-M. Delaye¹, L.-H. Kieu¹, S. Peuget¹, G. Bureau¹, G. Calas², C. Stolz³

²Université Pierre et Marie Curie, IMPMC

³Laboratoire de Mécanique du Solide (Ecole Polytechnique)

✓ Gestion des déchets nucléaires

- ✓ Simulations des effets d'irradiation sur la structure
 - d'un verre SiO₂-B₂O₃-Na₂O
 - de la silice

✓ Influence de l'irradiation sur le comportement à la fracture (Thèse de L.-H. Kieu)

✓ Discussion and Conclusions

Gestion des déchets nucléaires

✓ Confinement des déchets à vie longue ➤ Verre R7T7 dans les verres nucléaires :

- Produits de fission (Cs, Sr ...)
 - Désintégrations β
 (excitations electroniques)

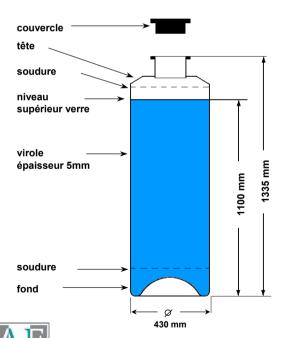
Oxyde	% Mass
SiO2	45.1
B2O3	13.9
A12O3	4.9
Na2O	9.8
CaO	4.0

> 30 composants

- Actinides à vie longue (Am, Np, Cm)

Particule	Portée	Nb de déplacemen ts par évènement	Dose après 1000 ans	
Noyau de recul	30 nm	1000 – 2000	1.7 10 ¹⁸	Effets élastiques
α	20 μm	100 – 200	1.7 1018	Effets inélastiques
β	1 mm	~1	4.3 10 ¹⁹	Effets inélastiques

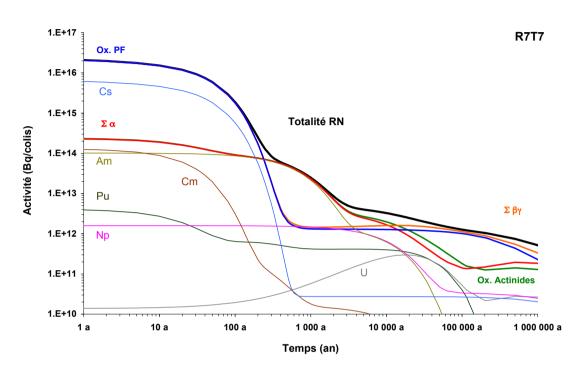
La Dynamique Moléculaire est un bon outil pour la simulation des effets élastiques (cascades de déplacements)



energie atomique • energies atternatives

✓ Les verres nucléaires sont destinés à être stocker en géologie profonde sur des temps longs

- Nécessité de garantir leur comportement à long terme
 - Sous l'effet de l'irradiation
 - Sous l'effet de l'altération par l'eau



Système fermé

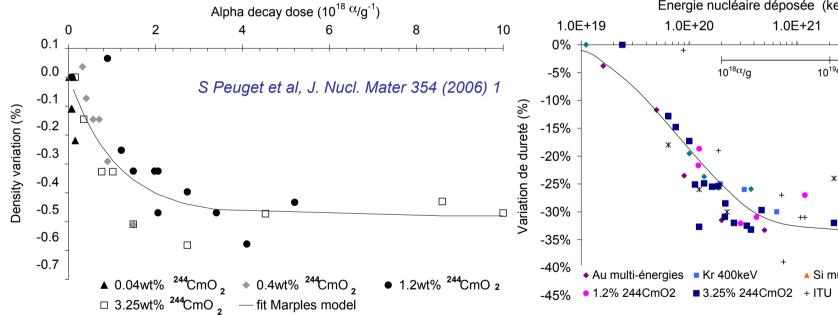
Système ouvert

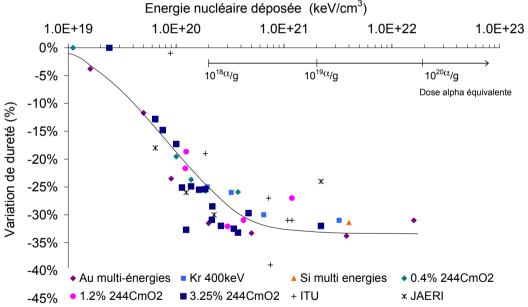
Les doses d'irradiation dans le temps

Les désintégrations β sont majoritaires jusque vers 300a Les désintégrations a deviennent majoritaires ensuite

Les approches mises en œuvre à Marcoule

- **★**Verres réels dopés au ²⁴⁴Cm (durée de vie = 18 ans)
 - + Expérience représentative de la réalité sous réserve d'absence d'effets du débit de dose
 - Etudes limitées aux propriétés macroscopiques pour cause de travail en actif (chaîne blindée Atalante)
- **★**Verres irradiés extérieurement (verres complexes et verres simples)
 - + Séparation des types d'irradiation (électrons, alpha, ions lourds)
 - + Large gamme d'investigation possible (du macroscopique au microscopique)
 - Débit de dose important
 - Faiblesse des profondeurs irradiées (quelques microns superficiels pour les ions lourds)
- **★**Simulation par dynamique moléculaire (verres simples)
 - + Accès à l'échelle atomique
 - +/- Seules les interactions nucléaires sont accessibles
 - Absence de relaxation à long terme

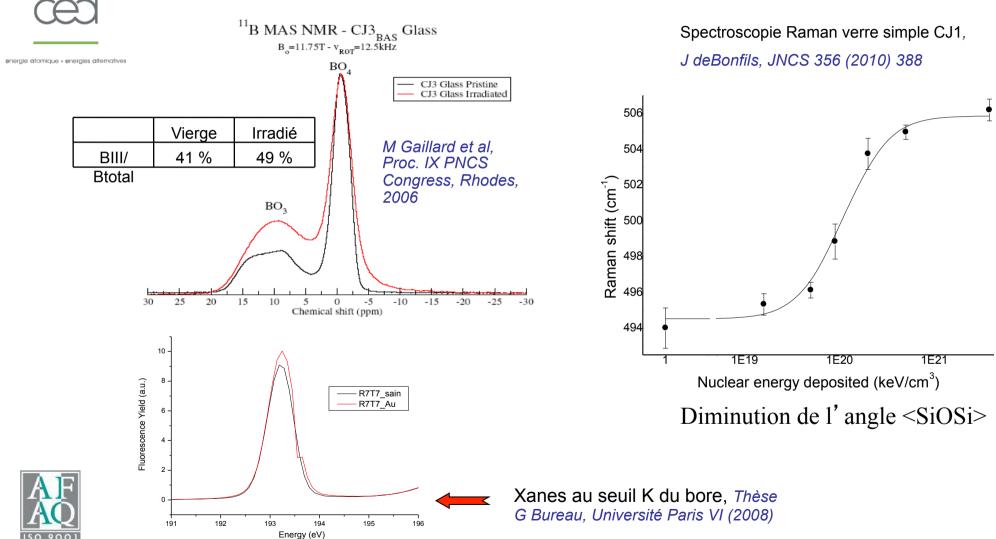

Dans les verres dopés



- Léger gonflement du verre
- Module élastique et dureté diminuent
- Amélioration de la résistance à la fissuration
- Vitesse initiale d'altération inchangée

Légères variations de propriétés jusqu' à 4 10¹⁸ α/g

Stabilisation sur la gamme 410¹⁸ 10¹⁹ α/g



Pourquoi le verre évolue ? Pourquoi les variations de propriétés présentent un palier de stabilisation?

Effet des désintégrations α sur la structure

Ordre local : Conversion partielle de la coordinence du bore observée sur des verres simples et complexes

✓ Gestion des déchets nucléaires

✓ Simulations des effets d'irradiation sur la structure

- d'un verre SiO₂-B₂O₃-Na₂O
- de la silice

✓ Influence de l'irradiation sur le comportement à la fracture (Thèse de L.-H. Kieu)

✓ Discussion and Conclusions

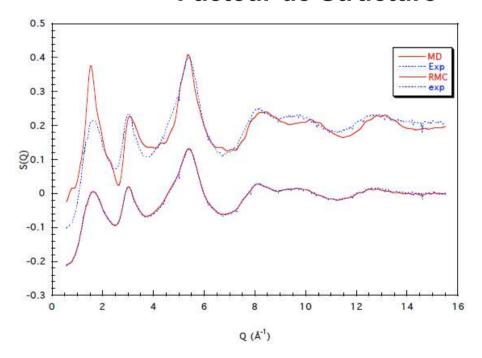
- ✓ Simulation de verres simplifiés
 - $67.7\%SiO_2 18.0\% B_2O_3 14.2\% Na_2O (verre CJ1)$
 - SiO₂ pure (potentiels BKS)
- ✓ Potentiels de Born Mayer Huggins + Termes à trois corps

$$\phi_2(r_{ij}) = A \exp(-\frac{r_{ij}}{\rho}) + \frac{z_i z_j}{r_{ij}}$$

$$\phi_3(r_{ij}, r_{ik}, \theta_{jik}) = \lambda \exp(\frac{\gamma}{r_{ij} - r_c} + \frac{\gamma}{r_{ik} - r_c})(\cos \theta_{jik} - \cos \theta_0)^2$$

✓ A courte distance, potentiels ZBL (Ziegler – Biersack – Littmarck)

$$\Phi_{ZBL}(r_{ij}) = \frac{q_i q_j e^2}{r_{ij}} \sum_{k=1}^{4} c_k e^{-\frac{b_k r_{ij}}{a}}$$

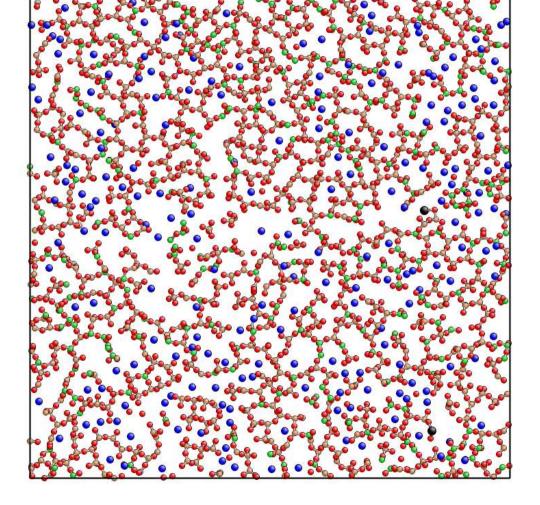


✓ Structure du verre CJ1

	C_{B}	$d_{ ext{B-O}}$	$ m d_{Si ext{-}O}$	densité	K(GPa)
Expérience	3.73	1.37 - 1.47	1.61	2.45	45
Simulation	3.75	1.45	1.59	2.38	85

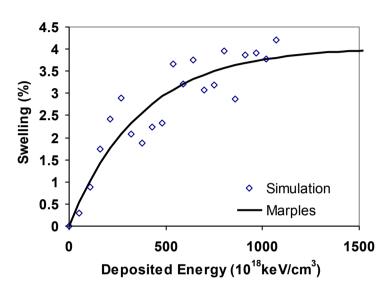
Facteur de Structure

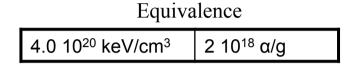
Les environnements locaux sont trop rigides à cause des charges entières


Cormier L., Ghaleb D., Delaye J.-M., Calas G., Phys. Rev. B, 61 (2000) 14495

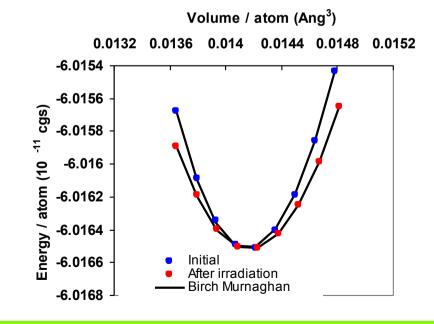
✓ Simulation d'une cascade de déplacements Temperature ambiante 600eV Cascade de déplacements Série de cascades de déplacements pour Projectile initial irradier le volume complètement

√ Exemple d'une cascade de 4keV dans le verre CJ1


Delaye J.-M., Ghaleb D., Phys. Rev. B 61 (2000) 14481



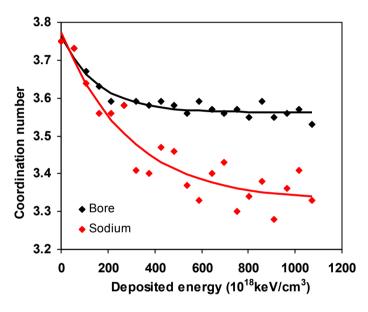
✓ Gonflement du verre CJ1 sous l'effet des chocs balistiques

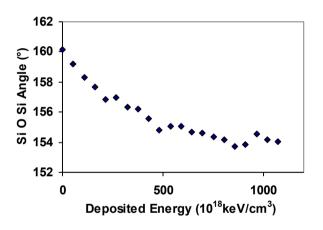

✓ Décroissance du module d'incompressibilité

K décroit de 85GPa à 61GPa (-28%) (la décroissance des modules élastiques dans le verre réel est de -30%)

Gonflement expérimental sous irradiation par des ions lourds : ~4.0% (dose de saturation : 5 10²⁰keV/cm³)

(J. deBonfils et al., J. Non-Cryst. Solids 356 (2010) 388)





Décroissance des coordinences locales

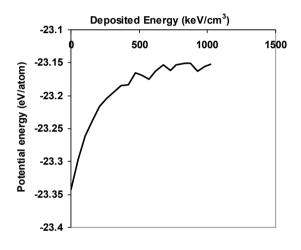
energie atomique • energies atternatives

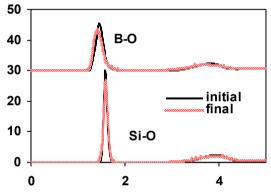
Décroissance des angles of T-O-T'

	%B ^[3]	%B ^[4]	Q_4	Q_3	Q_2	Q_1	Q_0
Initial	25%	75%	95.8%	4.2%	0%	0%	0%
Final	47%	53%	85.2%	14.6%	0.2%	0%	0%

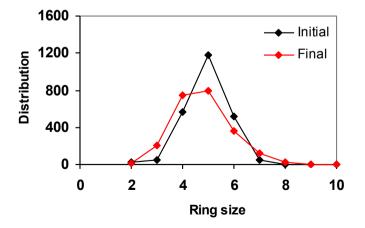
En XANES : ${}^{6}B^{[3]}$ initial : 27% $\rightarrow {}^{6}B^{[3]}$ final : 43%

G. Bureau: Thèse UPMC 2008


Augmentation du désordre



Augmentation de l'énergie interne



Elargissement des distributions

Fonctions de distribution radiales

Anneaux

Et les angles ...

Bilan des effets élastiques dans le verre CJ1

Les chocs balistiques sont responsables des évolutions observées expérimentalement jusqu'à la dose de 10¹⁹ α/g

Les modifications des propriétés macroscopiques s'explique par la modification de la structure atomique

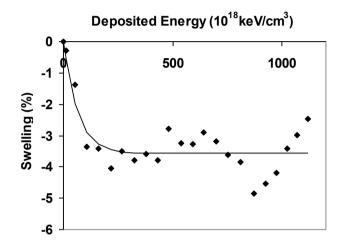
- ✓ Décroissance de la coordinence des B et dépolymérisation du réseau
- ✓ Augmentation du degré de désordre

Origine du palier de saturation

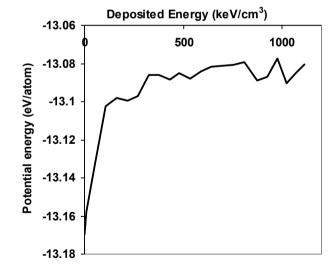
✓ Il suffit d'irradier chaque zone une fois pour atteindre localement la saturation. Les irradiations suivantes ne modifient plus la structure → analogie avec un effet de trempe thermique

✓ Gestion des déchets nucléaires

- ✓ Simulations des effets d'irradiation sur la structure
 - d'un verre SiO₂-B₂O₃-Na₂O
 - de la silice


✓ Influence de l'irradiation sur le comportement à la fracture (Thèse de L.-H. Kieu)

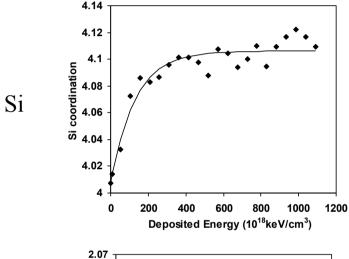
✓ Discussion and Conclusions

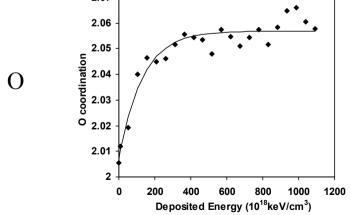


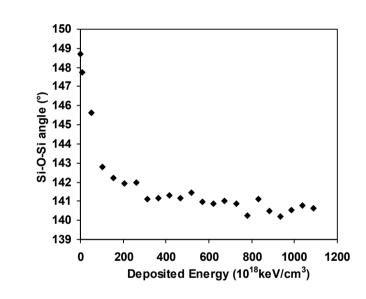
✓ Densification de SiO₂

Gonflement expérimental de la silice irradiée aux neutrons : ~2.5% (R.A.B. Devine, *Nucl. Instr. and Meth.* B 91 (1994) 378)

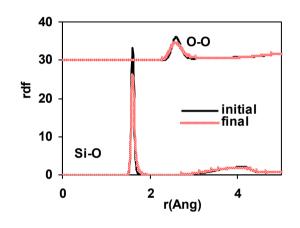
✓ Augmentation de l'énergie interne

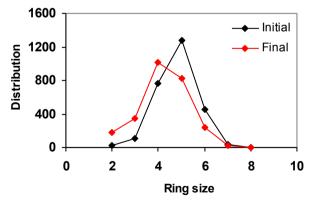





Augmention des coordinences locales

Décroissance des angles of Si-O-Si




energie atomique « energies alternatives

Augmentation du désordre

Elargissement des distributions

Fonctions de distribution radiales

Anneaux

et les angles ...

Comparaison entre la silice pure et le verre CJ1

Ce qui est différent

Silice	Verre CJ1
Densification	Gonflement
Augmentation des coordinences	Diminution des coordinences

Ce qui est identique

|--|

Diminution des angles Si-O-Si (et Si-O-B dans le verre CJ1)

Augmentation du degré de désordre

Une densification n'est pas obligatoirement associée à une diminution des angles

✓ Gestion des déchets nucléaires

- ✓ Simulations des effets d'irradiation sur la structure
 - d'un verre SiO₂-B₂O₃-Na₂O
 - de la silice

✓ Influence de l'irradiation sur le comportement à la fracture (Thèse de L.-H. Kieu)

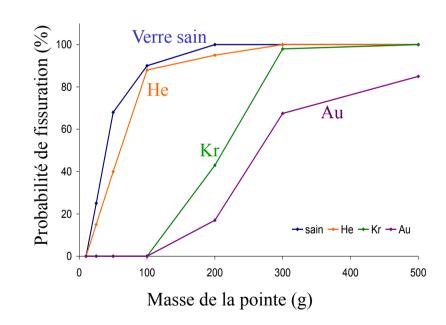
✓ Discussion and Conclusions

Influence de l'irradiation sur le comportement des verres à la fracturation

▶ La ténacité augmente sous irradiation:

- ◆ Dans les verres dopés, la probabilité de fissuration diminue
- ◆ Dans les verres irradiés extérieurement par des ions lourds (Kr, Au)

MAIS ...


◆ Aucune modification observée sous irradiation aux ions He

Les effets élastiques sont responsables de l'évolution de la ténacité

Dose [α/g]	5.1016	6.10 ¹⁷	> 10 ¹⁸
Probabilité de fissuration	80 %	40 %	0 %

Probabilité de fissuration mesurée par micro-indentation

Développement d'un potentiel empirique pour les verres SiO₂-B₂O₃-Na₂O

► Potentiels de paires (Modèle de Buckingham) : $\phi(r_{ij}) = \frac{q_i q_j}{r_{ij}} + B_{ij} \exp\left(\frac{q_i q_j}{r_{ij}}\right)$

Interaction coulombienne

Une dépendance avec la composition est introduite:

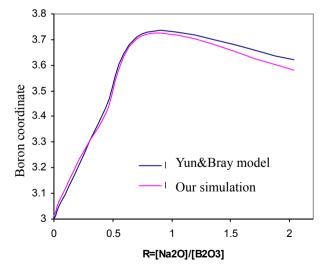
Les charges dépendent de la composition

 q_i = function (R,K)

Le terme répulsif B-O dépend de la composition

$$B_{B-O}$$
 = function (R,K)

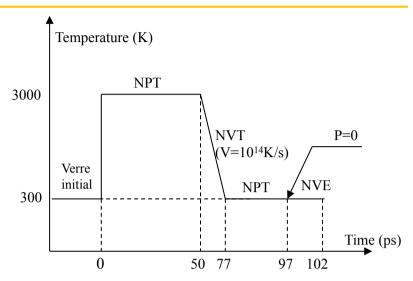
Interaction répulsive


Interaction dispersive

 $R=[Na_2O]/[B_2O_3]$ $K = [SiO_2]/[B_2O_3]$

Validation du modèle sur plusieurs verres et sur le cristal de Reedmergnerite (les propriétés structurales sont reproduites avec une précision < 5% and les propriétés mécàniques sont reproduites avec une précision < 18%)

	Densité (g/ cm³)	Bulk modulus (GPa)	Module d'Young (GPa)
Ecart moyen	1,80 %	15,67 %	9,83 %
Ecart maximal	2,7%	16,7%	16,8%


Evolution de la coordinence du B avec le rapport R

Modélisation des effets d'irradiation

Impossibilité d'irradier totalement un grand volume en raison des temps de calcul Les effets d'irradiation sont simulés en accélérant la vitesse de trempe (analogie entre les effets) [G. Bureau, PhD thesis, University Paris VI, 20081

Un verre plus désordonné représentatif du verre irradié est obtenu

Accélération de la vitesse de trempe

Verre SBN14	Approche par la trempe	Approche par les cascades	Expérience
Gonflement	7 %	4 %	3 %
Augmentation du % de [3]B	10 %	17 %	18 %
Croissance du % de ONP	3%	4%	
Décroissance de l'angle Si-O-Si	2%	4%	3%
Décroissance de l'angle Si-O-B	2%	4%	

Simulation de la fracture par dynamique moléculaire

Boîte de simulation :

Parallélépipède rectangle

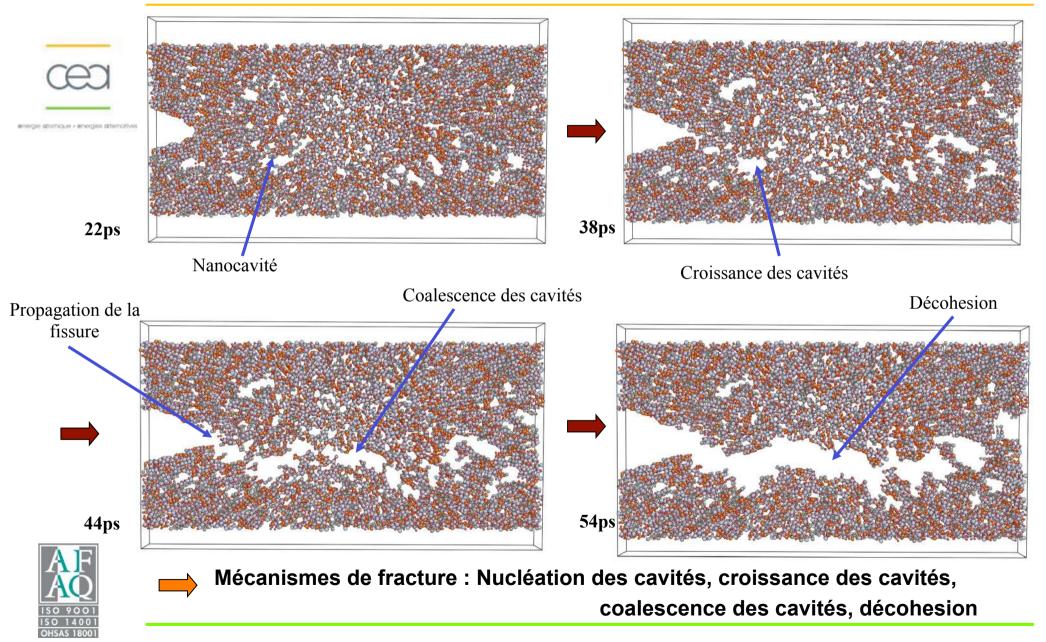
 $(L_X \times L_Y \times L_Z)$

100000 atomes

2 couches gelées en haut et en bas

Encoche initiale : PxL_YxH sur un des côtés

Simulation de la fracture :


Des déplacements sont imposés sur les couche Different vitesses de traction sont testées La température est fixée à 5K

▲Déplacement Atomes gelés Atomes gelés Déplacement

Les verres CJ1 sain et "irradié" sont utilisés Vitesse de traction : 4 10-4 et 12 10-4 Å/fs

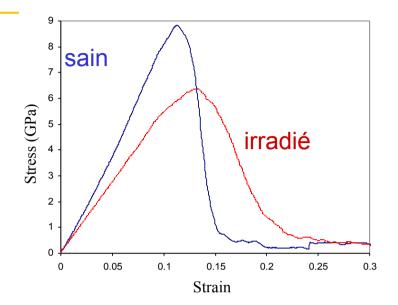
Mécanismes de fracture (verre "irradié" de 100 000 atomes)

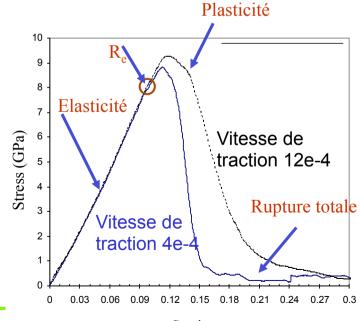
Propriétés mécaniques du verre CJ1 (100 000 atomes)

► Comportement élastique :

Elasticité linéaire : verre sain E = 75 GPa; verre "irradié" E = 56 GPa

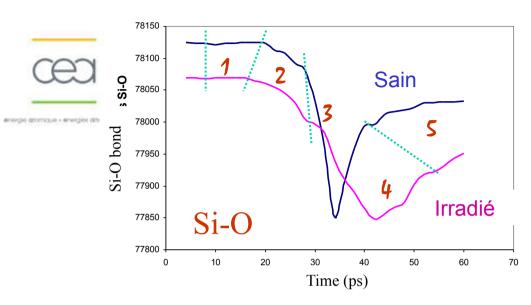
Décroissance de l'élasticité dans le verre "irradié"

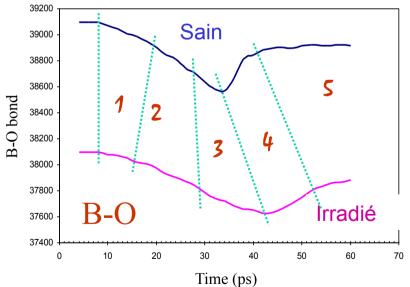

(-25% par simulation; -30% expérimentalement)


Limite élastique : verre sain $R_e = 7,7$ GPa verre "irradié" $R_e = 5,5$ GPa

Limite élastique plus basse pour le verre "irradié"

Plasticité plus grande du verre "irradié"


- ► Effet de la vitesse de traction :
- Limite élastique augmente avec la vitesse de traction
- La plasticité augmente avec la vitesse de traction



Liaisons brisées au cours du temps

Etape 1: Début de la nucléation des cavités : rupture de liaisons B-O

Etape 2 et 3: Nucléation et croissance des cavités

Le taux de ruptures de liaisons est plus faible dans le verre "irradié" en raison d'une plus grande plasticité autour des cavités

Etape 4: Coalescence des cavités jusqu'à la rupture

Le taux de reformation des liaisons dans le verre "irradié" est plus faible

La coalescence est plus lente dans le verre "irradié" et la rupture est retardée

Conclusions

Les modifications structurales liées à l'irradiation ...

- ✓ Dépolymérisation et mise en désordre
- ✓ Décroissance des modules élastiques

... influence le comportement à la fracturation

- ✓ Modification de la limite élastique
- ✓ Modification des déformations plastiques
- ✓ Taux de rupture des liaisons plus lent et retard à la fracturation

>>> Origine de l'augmentation de la ténacité sous irradiation?

