"SiO₂ et B₂O₃ : Deux verres peculiers?

Akira Takada Asahi Glass Co., Ltd. & University College London & The University of Tokyo 5 Nov, 2009 Verre_2009

Contenu

"Mystère en Structure de Verre"

1. Mystère en Verre de B₂O₃

2. Mystère en Verre de SiO₂

3. Direction future

1. Mystère de Verre de B₂O₃

Il y a encore beaucoup de discussions... Laquelle est la unite dominante en structure, unite de BO₃ independent ou boroxol rings (B₃O₆) ?

Une majorite des experimentations soutiens que une fraction de B atomes present en boroxol rings est environ 75%.

Pionniers de recherche sur 'boroxol-ring'		F valeur = fraction de B atomes en boroxol rings
<u>Pionnier</u>	<u>méthode</u>	<u>f valeur</u>
<u>Experimentation</u> Mozzi & Warren (1970)) Xray diffraction	
Jellison et al (1977)	NMR	~82%
Bril & Konijnedijk (1975) Raman scattering		
Johnson et al (1982)	Neutron scattering	~60%
Hannon et al (1994)	Inelastic neutron scatter	ring ~80%
<u>Simulation</u> Takada et al (1994)	3-body + bond-order pot.	27% (const V) 40-53% (const P)
Maranas (2000)	polalizable model	33%
Kashcieva(2005)	3-body+4-body	10-33%

Méthodes nouvelles

Difficultés sur modèle structurel de B₂O₃
1) La B-O union est complexe.
Modèle sophistiqué (bond-order type, polalizable model ou ab-initio MD

2) La dynamique de retablissement de structure est lente. Acceleration pour equilibration ou sampling efficiente est necessaire !

la première méthode pour résolution: 'bond-order typ'A.Takada et al, *Phys. Chem. Glasses*, <u>44</u>, 147(2003) 'ab-initio MD' G. Ferlat et al, *Phys. Rev. Lett.* <u>101</u>. 065504 (2008)

la seconde méthode pour résolution: MD/MC couplé A. Takada, Phys. *Euro. J. Glass Sci. Technol. B*, <u>47</u>, 493 (2006)

Triangle=BO

B₂O₃ cristal (exp.) (1D chaine)

Cs₂O-9B₂O₃ cristal (exp) (3D interpenetrant)

HBO₂ cristal (exp.) (2D plan)

Verre calculé par MD/MC couplé (75% boroxol ring)

Cette structure ressembles à $Cs_2O-9B_2O_3$.

Pair Distribution Function de Modèle Structurel

Les pics caractérisés de boroxol ring

Bond Angle Distribution de Modèle Structurel

Comparaison entre B₂O₃ et SiO₂ de ce point de chimie structurele

température basse

température haute

SiO2 cristalQuartzCristobalite(6&8-membre ring)(6-membre)

Cristobalite, tridymite (6-membre)

structures semblables:

 $C_{s_2}O_{-9}B_{2}O_{3}(75\% B)$

 B_2S_3 (75% B)

B2O3 cristalB2O3-I"Boroxolite" hypothétique(8&10-membre)(75% B atomes en boroxol rings)

cristal 'Boroxolite' hypothétique

La charactère de 'Boroxolite': structure interpenetrant (non-plan)

2. Mystère en verre de SiO₂

Qu'est-ce qu'il y a un modèle simple pour expliquer ces mystères?

Deux facteurs importants doivent être pris en cosidèration:
 1) α-β type de phase transformation Huang & Kieffer (2004)
 2) Coupe et reunion de Si-O unions Takada et al (2004)

Le premier exemple de mystère

Le deuxième exemple de mystère

Changement de densite en verre de SiO₂ dependant de température et pression

Température (K)

Analyse par 'Structon' : A.Takada, P. Richet, C.R.A. Catlow, G.D. Price, Eur. J. Glass Sci. Technol. B, 48 (2007) 182.

<u>'Normal'-liquid</u> Seulement une parametre d'ordre

La deuxième méthode originale!!!

Nouvelle méthode en thermodynamique statistique

Strategie:

Chaque atome a son interaction-energie individuelle qui est dependante de son environnement.

6-dimension (x,y,z,vx,vy,vz)

Comment pour exprimer chaque energie locale?

Seulement une approximation:

Tout les interactions (Coulombic & short-range) sont partagées egalement et ses demies sont distribués à chaque atome. Les energies sont ajoutés en chaque atome.

Cet energie ajouté en atome est nommée 'atomistic energy.'

Il y a une correspondance entre Structure et 'atomistic energy' distribution functions.

e? Interactionenergie: E e) tribués

E/2

atomistic energy distribution functions

Niveau d'energie

A. Takada et al, Non-Cryst. Solids, 355 (2009) 694.

'atomistic energy distribution functions'

cristobalite

verre rafraîchi lentement verre caillé instantanement

Le premier moment (moyenne) et le second moment (variance) de atomistic energy distribution functions' sont comptés et figurés.

En résumé: On peut distinguer des verre avec antécédent thermal par cette méthode nouvel.

3. Direction future

Remerciements pour les chefs qui partagent les cuisines

University College London Prof. C.R.A. Catlow Prof. G.D. Price Prof. P.F. McMillan

IPGP-Paris **Prof. P. Richet**

IMPMC-Paris Dr. G. Ferlat

Tokyo Institute of Tech. **Prof. T. Atake**