Spéciation des éléments légers par spectroscopie d'absorption des rayons X tendres

Delphine Vantelon

La spectroscopie d'absorption X, XAS

La combinaison µXRF-µXAS

• Le domaine des rayons X tendres : la ligne de lumière LUCIA à SOLEIL

Quelques exemples d'études de verres

Principe de la spectroscopie d'absorption X

• XANES :

X-ray Absorption Near Edge Structure

- \rightarrow Structure électronique
- Position du seuil : degré d'oxydation
- Forme du préseuil : Peuplement électronique des orbitales Symétrie de l'environnement

• EXAFS :

Extended X-ray Absorption Fine Structure

- → Environnement atomique
- Oscillations
 Nature, distance et nombre des atomes voisins

Effet du remplissage de la couche 3d : exemple du chrome

Spectre XANES au seuil K du Cr d'un échantillon de ciment dopé au chrome comparé à deux références Cr_2O_3 (Cr^{III}) et Na₂ CrO_4 (Cr^{VI}).

Le spectre d'absorption des rayons X présente un "prépic" intense caractéristique dans le cas du chrome VI.

- État de valence
- Configuration électronique
- Peut aussi renseigner sur l'environnement structural à courte distance

Crédit: Valérie Briois

Principe de la spectroscopie d'absorption X

• XANES :

X-ray Absorption Near Edge Structure

- → Structure électronique
- Position du seuil : degré d'oxydation
- Forme du préseuil : Peuplement électronique des orbitales Symétrie de l'environnement

• EXAFS :

Extended X-ray Absorption Fine Structure

- → Environnement atomique
- Oscillations
 Nature, distance et nombre des atomes voisins

Cette technique est particulièrement intéressante puisqu'elle ne nécessite pas d'organisation cristallographique. Applications aux matériaux désordonnés (verres)

Analyse des données EXAFS

Cartographie de micro-fluorescence X et micro-absorption X

Distances interatomiques Nombre et type de voisins État chimique

association

Informations structurales et électroniques concernant un élément donné, pour un échantillon hétérogène (résolution spatiale à l'échelle du spot de photons)

Combinaison µ-XRF + µ-XAS

- Deux intérêts majeurs :
 - Pas de conditionnement particulier de l'échantillon (Peut être mis en œuvre sur des matrices brutes non perturbées)
 - Analyse non destructive
- Sensible à l'ensemble des espèces chimiques présentes
- Seuil de détection (XANES 10aine ppm ; EXAFS 100aine ppm)
- Application aux systèmes naturels qui sont le plus souvent désordonnés, hétérogènes à différentes échelles et contiennent différents éléments chimiques
- · Echantillon hétérogène
 - XRF: Cartographie : composition, association d'éléments
 - XAS: Pour un élément donné : information structurale et électronique
 - XRF + XAS: Pour un élément donné : cartographie spéciation chimique en fonction position Variabilité spatial des espèces, associations de phases
- → Cartographie et détermination micro-structurale (résolution spatiale à l'échelle de la taille du faisceau)

Les décors colorés des céramiques grècques de la période archaïque (Est de la Grèce, 6^{ème} siècle av. J.C.) Les décors noirs.

F. Mirambet¹, A. Bouquillon¹, P. Lehuédé¹, S. Reguer², D. Vantelon² ¹ Centre de Recherche et de Restauration des Musées de France

² Synchrotron SOLEIL

Le rapport Pic épaulement / pic A \rightarrow environ 10-15 % d'Al tétraédrique.

Décor noir ≠ hercynite

Hercynite : Fe²⁺ en site tétraédrique dans une structure spinelle
Décor noir : Décalage du seuil et du pré-seuil vers les hautes
énergies, oscillations amorties

Présence de Fe²⁺ et³⁺ en site tétraédrique et octaédrique Combinaison linéaire du spectre XANES : 60% Hercynite + 30% Magnetite + 10% Hématite

Spectres XANES Al et Mg de différents spinelles mesurés à

Taille des cluster – vacances – géométrie des sites \rightarrow A haute température : Al $\leftarrow \rightarrow$ Mg

Neuville D., de Ligny D., Cormier L., Henderson G., Roux J., Flank A.M., Lagarde P. GCA. (2009)

Versatilité des environnements échantillon

Alteration aqueuse à long terme d'un verre de stockage Mg μ

Mg µXANES

Poudre de verre riche en Mg lixivié en eau distillée à 90°C pendant 12 ans. LUCIA : cartes μ XRF + Mg K-edge μ XANES + Cs L_{III}-edge EXAFS Sur sections polies (30 μ m) de poudre imprégnée en résine

Carte bicolore de la distribution de Na et Mg (FY) avec localisation et label des points sondés en µXAS. Anotations: ugl unleached glass; A altered; C unaltered; mineral references

Le pourtour altéré est enrichi en Mg Formation de smectite riche en Mg

Pas de modification de [Cs] Pas de modification de la spéciation

→ Les équilibres solide solution et / ou adsorption sont les modèles chimiques à utiliser pour déterminer les limites de solubilité de Cs dans l'eau des pores imprégnant les verres dans les dépôts de déchets radioactifs

normalized absorption

Curti E., Dahn R., Farges F., Vespa M. Geochim. Cosmochim. Ac. (2009)

Mechanisms of bio-alteration of silicate glasses in presence of heterotrophic bacteria

Perez, A. (Ph D. student), Trcera, N., Rossano, S., van Hullebusch, E., Labanowski, J. (G2I, Marne la Vallée; SOLEIL)

Alteration of the samples SEM image **Growth medium** • Succinic acid, 4 g.L⁻¹ **Altered** glass • $(NH_4)_2SO_4$, 1 g.L⁻¹ Thickness 2xmore • Na₂HPO₄, 1 g.L⁻¹ Unaltered glass than without bacteria • Tris , 6 g.L⁻¹ • NaOH (pH = 7,5) continuous agitation with or without bacteria (Pseudomonas aeruginosa) Long term experiment : μ XRF- μ XAS Alteration: • Mg depletion, Fe P enrichment Increase of the Mg coordination number • New structures : Mg- and Fe-bearing phosphate • Modification of the redox $Fe^{2+} \rightarrow Fe^{3+}$ Na_O - (MgO;FeO) - 2SiO_ under H Na.O - (MgO;FeO) - 2SiO, under H. Na_O - (MgO;FeO) - 2SiO, under H Growth Medium and Bacteria Growth Medium and Bacteria Growth Medium and Bacteria Fe K-edad Mg K-edge P K-edge Absorption (Arb. units) (Arb. Absorption (Arb. DH 1 Pt 3 Pt 2 Pt 1 7100 7150 7200 7250 7300 2140 2160 2200 2220 2180 1300 1310 1320 1330 1340 1350 Energy (eV) Energy (eV) Energy (eV)

Dépôt des projets : 2 / an : 15 février - 15 septembre

Poste ouvert : science des matériaux – XAS

http://www.synchrotron-soleil.fr/portal/page/portal/Soleil/OffresEmplois/Scientifique_ligne_LUCIA_CDI

delphine.vantelon@synchrotron-soleil.fr 01 69 35 96 94 // 06 45 47 85 99

Combinaison µ Raman, µ XRF et µ XAS

Gneiss: roche métamorphique mica, feldspath et quartz Eléments majeurs : Si, Al

→ Crystal de quartz orienté avec l'axe c dans le plan

