State of the art of the extrapolation of simple oxides in the CALPHAD framework

Alexander Pisch

CNRS Researcher

Laboratoire SIMaP

The extrapolation of the Gibbs energy of liquids from high temperature (where experimental data may exist) to room temperature is a key feature in the CALPHAD framework = end members of liquid phase

Heat capacities and entropies of pure simple oxides

- SiO2, B2O3 : experimental data down to OK for heat capacity
- CaO : may be estimated from CaSiO3(glass) using SiO2(glass)
- Al2O3 : from CaAl2O4(glass) & Ca12Al14O33(glass) ; CaAl2Si2O8(glass)
- MgO : from CaMgSi2O8(glass)

With this data, optimize Gibbs energies at high temperature (phase diagram) + heat of mixing / cristallisation in glasses

Cp function for FACT and SGTE databases are almost identical, only cp at T>Tf shows some minor difference

	S298K	Ср(298К)
Ехр	67.4	62.60
SGTE	87.2	62.6
FACT	87.4	62.8

Different melting points in FACT & SGTE databases - Fact 2857K - SGTE 3183K Different cp functions

Different cp for liquid > Tf

FACT : solid cp until melting point

SGTE : broad transition from Tfus to low T

1998Golcezwski : Glass temperature included

	S298K	Ср(298К)
Exp	43.8	42.23
SGTE	59.0	42.04
FACT	65.7	42.02

CaO amorphous - 1998Golczewski

Bragg-Williams type model

(CaO,SF)

SF = « structural fluctuation »

SF can be interpreted as vacancy without any mass

G(CaO) = Gcryst + A+BTG(SF) = 60000 - RT

Interaction : L0, L1

Identical melting point in both databases

Differences in Cp function and cp for T>Tf

A.Pisch – Workshop Thermodynamique des Verres – 09/10/2017

© SIMAP / CNRS 2017 – All rights reserved

Different Cp extrapolation to RT in both databases.

Cp vs T in FACT almost

Cp vs T in SGTE with broad transition below Tf

	S298K	Ср(298К)
Ехр	69.5 69.1	79.89
SGTE	93.4	79.02
FACT	43.6	155.06

Heat of mixing Ca0.5AlO2 – SiO2

	Vitrification (985K)		Fusion	
	exp	calc (FACT)	ехр	
NaAlSi3O8 (Albite)	51890	59440	65350	67659
CaAl2Si2O8 (Anorthite)	77755	156063	133648	160555
CaMgSi2O6 (Diopside)	85600	128158	129704	129568

Comparison of standard entropies of selected compounds

	S298K exp	– glass calc	S298K - exp	- crystal calc
SiO2	43.3	50.3	41.4	41.5
CaSiO3 - PW	86.2	117.0 112.0	87.2	86.9
CaSiO3 - W			81.7	79.8 82.0
CaMgSi2O6 (Diopside)	159.9	202.7	142.0	142.5
MgSiO3	74.1	74.1 79.5	66.3	66.6
CaAl2Si2O8 (anorthite)	198.7	233.3	199.3	200.2
Mg2Al4Si5O13 (Cordierite)	414.5	427.2	407.1	418.0

Conclusions

- The heat capacities of pure oxides are not well described in the FACT and SGTE databases. This leads to considerable errors in higher order systems.
- The optimized standard entropies in the thermodynamic databases for selected glasses differ considerably from the experimental ones
- The glass transition is not modeled, even for SiO2(glass) for which experimental data exists
- The experimental heat of mixing in glasses, as measured by solution calorimetry, has apparently not been taken into account in the modelings.
- There are scarce attempts in the literature to improve the data (2004Schnurre, 1998Golczewski)

