

Strategy for developing new structural materials for industrial applications in molten silicate glass: fundamental study of the molten glass interaction with model alloys

T.K. Abdullah^{1,2}, C. Petitjean¹, P.J. Panteix¹, C. Rapin¹, M. Vilasi¹, Z. Hussain², A. Abdul Rahim³

¹Institut Jean Lamour, Dépt CP2S: Equipe 206, UdL, Nancy, FRANCE ² School of Materials and Mineral resources Engineering, USM, MALAYSIA ³School of Chemical Sciences, USM, MALAYSIA

Context

Industrial aspects

Glass fiberizing

Rotation $\sim 2000 \text{ rpm}$

Vitrification of nuclear wastes

Pénétration du verre dans l'alliage

Aeronautical applications: Thermal Barrier Coatings

Corrosion by CaO-MgO-Al₂O₃-SiO₂ (CMAS) at 1200°C

Glass = corrosive medium

2

Outline

1) Corrosion of
✓ chromia forming alloy → Ni30Cr (wt.%)
✓ alumina forming alloy → Ni8Al28Cr (wt.%)
in soda lime silicate glass (Na₂O-CaO-3SiO₂ = NC3S).

- 2) Physicochemistry of the protective oxide in the melt. Determination of Cr_2O_3 solubility in soda lime silicate melts as a function of:
 - oxygen fugacity (*f*O₂)
 - glass composition
 - temperature

Corrosion of alloys by molten glass <u>Alloys preparation</u>

- Induction heating in high frequency furnace

Corrosion of alloys by molten glass Hot air oxidation of the alloys at 1100°C (100 h)

Corrosion of alloys by molten glass <u>Electrochemical measurements</u>

Polarization resistance, free potential, I vs. E measurements at high temperature.

Furnace

Acquisition system

3 specific electrodes:

WE = Working Electrode (Pt wire and alloy rods)

RE = Reference Electrode (Yttria Stabilized Zirconia)

CE = Counter Electrode (Pt plate)

Corrosion of alloys by molten glass Electrochemical measurements

Electrodes:

Corrosion of <u>Ni3oCr</u> by molten glass

Raw immersion in molten NC3S (1100°C/24 h)

Electrochemical measurements (1100°C)

Corrosion of <u>Ni3oCr</u> by molten glass

TGA analysis \rightarrow preoxidation at 1100°C/2h ~ 5 µm thick Cr₂O₃ layer

Corrosion of <u>Ni3oCr</u> by molten glass

Influence of the temperature → immersion at 1150°C After 2 hours of preoxidation

Raw immersion in molten NC3S (1150°C/24 h)

Corrosion of <u>Ni8Al28Cr</u> by molten glass

Raw immersion in molten NC3S (1100°C/24 h)

Corrosion of Ni8Al28Cr by molten glass

TGA analysis \rightarrow preoxidation at 1100°C/24h ~ 2 µm thick Al₂O₃ layer

Raw immersion in molten NC3S (1100°C/24 h)

Cr solubility at equilibrium

Physico-chemistry of Cr₂O₃ in molten glass MOx/MO_v buffers

14

Physico-chemistry of Cr_2O_3 in molten glass <u>Influence of fO_2 </u>

At equilibrium, Cr^{III} is assumed to remain constant with fO_2 at a given T as long as Cr_2O_3 is remaining in the melts

$$\frac{1}{2}Cr_2O_3(\overset{\text{Reddiciting: (3)}}{(melt)} + (\overset{\text{Cr}III}{x} - \overset{\text{Cr}III}{2}) O^{\text{AP}}(\overset{\text{melt}}{melt}) \rightarrow Cr^{III}O_x^{(2x-3)-}(melt)$$

$$Cr_{(\text{total})} = Cr^{II} + Cr^{III} + Cr^{VI} \text{ (EPMA analysis)}$$

Physico-chemistry of Cr₂O₃ in molten glass

Corrosion-solubility correlation

Conclusions

- ✓ Spontaneous behavior of Ni30Cr and Ni8Al28Cr leads to <u>corrosion</u> of the alloys even for a short run duration.
- ✓ Preoxidation of Ni30Cr may lead to the growth of a protective Cr₂O₃ scale.
 → durability of the scale linked to the <u>competition</u> between oxide growth and oxide dissolution
- ✓ No protection obtained after preoxidation of Ni8Al28Cr: → due to the great solubility of Al_2O_3 in the melt
- ✓ The influence of oxygen fugacity (fO_2) on the Cr solubility has been proved: → three solubility domains exist by varying the fO_2
- ✓ Cr content at glass/alloy interface close to equilibrium values:
 - \rightarrow use of the solubility measurements method to evaluate the durability of the materials against glass corrosion

Outlooks

✓ Durability of the protective Cr_2O_3 scale.

 \rightarrow optimization of the alloy composition (*i.e.* Cr content)

 \rightarrow optimization of the preoxidation treatment (*i.e.* scale thickness)

✓ Influence of T, fO_2 and melt composition (basicity, viscosity, ...) on the Cr solubility at equilibrium

 \rightarrow correlation with electrochemical measurements

✓ Study of the physico-chemistry of Al_2O_3 in the melts → solubility, phase precipitation, ...

THANK YOU TERIMA KASIH MERCI