Section 2018 Contribution of thermodynamics in determining the parameters of elaboration and energy efficiency

C. Claireaux, CelSian

We are not getting any younger - 2012

GehirnzerstörendsInformationsWelle	×
\$ ⊲)	34/5000 💌 👻
Brain-destroying information wave	\$
4)	_ 6 ₉ ~

R Conradt, 2019. Prospects and physical limits of processes and technologies in glass melting. Journal of Asian Ceramic Societies 7 (4) 377-396

Real case scenario

A furnace producing amber colored bottles doesn't reach the desired pull at a satisfactory level of quality [bubbles!]

Energy can neither be created nor destroyed, only altered in form.

Energy balance

WHAT COMES IN

- Combustion
- Boosting

A furnace consumes energy

Power supplied to the electrical boosting [kW]

Flow of gas supplied to the burners and the composition and/or caloric value of the gas

 \rightarrow Pin, the power input

P_{boost}

 $P_{comb} = H_{comb}V'_{fuel}$

 $P_{in} = P_{comb} + P_{boost}$

Benchmark, for container furnaces

7

A furnace is a chemical reactor

 \rightarrow Pex, the exploited power

 $P_{ex} = p((1-y_{cullet})\Delta H^{\circ}_{chem} + \Delta H(T_{ex}))$

Wait, what? – ΔH and ΔH°_{chem}

Tex melt

 ΔH_{melt}

 $H_{glass} = H_{vit} + H_{MIX}$

Heat of formation of the glass

	$-H_{\rm X}$	Hvit	
Compound	kJ/mol		
CaO-SiO ₂	1635.1	49.8	
2CaO-SiO ₂	2328.4	101.3	
Na ₂ O-2SiO ₂	2473.6	29.3	
Na2O-SiO2	1563.1	37.7	
3Na ₂ O-8SiO ₂	9173.0	103.9	

Table 5.3 (continued)

Na2O-CaO-5SiO2 Na2O-3CaO-6SiO2

Na₂O-2CaO-3SiO₂

2Na₂O-CaO-3SiO₂

SiO₂ (cristobalite)

Conradt, R. (2021). Fiberglass Batch-to-Melt Process. In: Li, H. (eds) Fiberglass Science and Technology. Springer, Cham.

5934.0

8363.8

4883.6

4763.0

908.3

59.8

141.9

92.5

92.5

6.9

- Heat of vitrification of definite compounds
- Mixing energy neglectable
- Same approach for ΔH_{melt}

How is the energy spent overall? Energy balance (container/float)

What can we do so far?

Boosting, combustion, pull, cullet ratio, batch composition \rightarrow Energy balance and efficiency

A system at equilibrium tends to maximize its entropy.

A fine balance

Heat flows from a hot body to a cooler one... While increasing entropy

High temperature difference

- High heat transfer rate short residence time
- High energy degradation

Temperature efficiency

$$\zeta = \frac{T_{ex} - T_0}{T_{ad} - T_0}$$

16

Glass melter = heat exchanger

Matching the power delivered to the power exploited

17

Heat capacity flow ratio

$$z_{FG} = \zeta \frac{P_{in}}{P_{ex}} \left(1 - \frac{P_{boost}}{P_{in}}\right)$$

Normalized pull

 $p_{86} = + \sigma_p$

average pull rate σ_p standard deviation

Radiative heat transfer from the combustion space is key

95% heat flux combustion \rightarrow glass

Grey radiation model Emissions = εσT⁴ [kW/m²] Balance of heat fluxes q [kW/m²] a, b, c functions of ε gas, melt, crown

$$T_{crown} = \left[\frac{c}{b}(q_{loss} + rH_{ex}) - \frac{a}{b}T_{gas}^4 + \left(1 + \frac{a}{b}\right)T_{melt}^4\right]^{\frac{1}{4}}$$

Emissivity of the crown

For most oxide-based materials $\epsilon \approx 0.4$

Unless coated with high emissivity paints

Emissivity of the combustion space

Flame emission coefficient = $f(T, [CO_2], [H_2O], flame thickness, [soot])$

Luminous, sooty flames $\varepsilon = 0.25$

Non sooty flames

Air gas $\varepsilon = 0.12$ / Oxy-fuel $\varepsilon = 0.4$

Emissivity of the glass

0.8 Foamy melt 0.6 Batch 0.4 0.2 0.0 200 400 600 800 1000 1200 surface temperature T in °C

And in reality?

ε melt (clear)	0.6
ε crown	0.4
ε gas (luminous air gas)	0.25
T melt	1350°C
T gas	1573°C
T crown	1570°C
q boosting	8 kW/m ²
q losses	78 kW/m ²
H ex	389 kW/m ²

 $P_{ex} = p((1-y_{cullet})\Delta H^{\circ}_{chem} + \Delta H(T_{ex}))$

Theoretical specific pull rate 3.12 t/m²/day

Actual specific pull rate 3.12 t/m²/day

What can we do now?

Quantify the influence of the heat transfer on the efficiency and combine everything to estimate the achievable pull rate

Energy Balance Model

- "Fast" (1-2 min) calculations
- Potential energy savings and CO₂ reduction potential
- Detailed picture where to save energy
- Quantify impact of implementing energy saving-measures
- Training tool !

Have we solved the problem?

Saving energy BUT keeping quality Thermodynamics + flow

Computational Fluid Dynamics

CFD simulation – domain discretization

Temperature [°C] 1100115012001250130013501400145015001550 1000

Classic sources of bubbles : shortcut flow and reboil

 Residence Time [hours]

 0.0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5
 5.6

Conclusion

- Elegant and efficient approach to accurately describe the energy exchanges taking place in furnaces.
- Powerful to quantify potential energy savings and optimize furnaces.
- For quality issues, the additional understanding of flows is a necessity.
- Excellent educational tool.

DO IT !

SelSian

Thank you for your kind attention!