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 Rôle prépondérant de la diffusion

 Quelle diffusion?
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Diffusion and corrosion

Diffusion, D. Mangelinck, CorroHT 2018

TEM view of Al2O3 on Fe-20Cr-6Al-0.08La 

after 400 h at 1,150C [Stott, Hiramatsu, 

Mater. High Temp. 2000].

Corrosion haute température (oxydation)

Produit de corrosion



1. Composition is constant
Self-diffusion coefficient: DA

Tracer diffusion coefficient: DA*

Correlation coefficient: f (Z: coordination number)

Defect diffusion coefficient: Dd ([d]: molar fraction of defects)

2. Composition changes (chemical diffusion)
Intrinsic diffusion coefficient: DA,AB

Chemical diffusion (interdiffusion) coefficient: Ď

Darken equation:

Integrated diffusion coefficient (Wagner, Van Loo)  

3. Ionic systems (ceramics)
Ambipolar diffusion: transport limited by the slower component (electroneutrality)

In oxides with predominant electronic conduction (transference number: tel >>> tA): 

Ď = tel.DA.F
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Definition of various diffusion coefficients

F ., AABA DD

Ď = xA.DB,AB + xB.DA,AB



Diffusion paths

 Volume diffusion

 Grain boundary diffusion

(different GB) 

 Diffusion in dislocations

 Surface, interface diffusion

 Voids, cavities…
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Diffusion: a little bit of history

1 - “ The law ” - A. Fick - 1855

Salt in water (Phil. Mag. 10 (1855) 30)

“ It was quite natural to suppose that this law for

the diffusion of salt in its solvent must be identical

with that according to which the diffusion of heat

in a conducting body takes place; upon this law

Fourier founded his celebrated theory of heat, and

it is the same which Ohm applied with such

extraordinary success to the diffusion of electricity

in a conductor ”

2 - “ Solids diffuse in solids ”

W. C. Roberts-Austen - 1889 

Fe can be carburized by diamond in vacuum at 

low temp.  (Nature 41 (1899) 14)

“ and I can measure it “

Au in Pb Phil. Trans. Roy. Soc. A187 (1896) 383

“ The following experiment constitutes so far as I 

am aware the first attempt to actually measure 

the diffusivity of one solid metal in another ”

3 - “Radioactive tracers ” G. Hevesy - 1921

210Pb in Pb J. Groh and G. v Hevesy Ann. Phys. 65 (1921) 216



Fick’s first law of diffusion
• Fick proposed a relationship of diffusion of matter 

similar to Fourier’s equation for heat. He proposed 
that the flux of particles is proportional to the gradient 
in concentration of particles. In one dimension this is 
written:

• The flux density j of particles has units e.g. #/(cm2s) 
or mol/(cm2s)

• The concentration is given in e.g. #/cm3 or mol/cm3

• The diffusion coefficient (or diffusion constant) then 
has units cm2/s

• The minus sign states that the flux goes down the 
concentration gradient. The negative of the 
concentration gradient may be taken as the driving 
force.

dx

dc
Dj 



Fick’s first law of diffusion - comments

• Fick’s first law is a phenomenological – or empirical – expression; It 

describes a flux in terms of a concentration gradient and a 

proportionality coefficient – the diffusion constant, or diffusivity. 

• However, Fick’s first law applies strictly only to neutral non-interacting 

particles. Examples comprise dilute solutions of interstitial atoms, e.g. 

atomic H in metals.

• For other situations, the coefficient in Fick’s first law is not a constant.

• D in Fick’s first law has not been given any physical meaning up to now. 

In the next, we will give it more content.

• Fick’s law is useful because, in experiments, it is easier to determine the 

composition 

dx

dc
Dj 



Measurement methods
Macroscopic methods: Based on long range mass transport

Microscopic methods: Based on jump frequencies
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Atom probe tomography:

- Atoms !!!

- 3D

- Quantitative at interface

 segregation

- Isotope  self-diffusion

Atom probe tomography: diffusion of Pt in Ni silicide:

• LEAP3000XHR
• 50K, 200 kHz, 

• 0.6 nJ/pulse, 

• 0.01 ions pulse

• 120x120x400 nm3

• 120 106 atoms

Pt

Si

Ni2Si



Diffusion: atomistic approach

Molecular Dynamics surface diffusion of an Ag adatom on Ag(111) 

• The atom vibrates on the surface

• When the temperature is increased, the vibration increase

• Some time, the atom jumps in random direction

• At high temperature, other mechanisms with higher barrier can occur 



Diffusion: how atoms can move in a cristal ?

Because of point defects                                                          

(lattice perturbation with a size in the order of the atomic volume)

If the solute atoms are smaller than

the atoms of the matrix, they can use

interstitial sites

Diffusion rate depends only on the

jump frequency

Atoms oscillate around a given lattice

site of minimum energy (mean vibration

energy ~ 3kT) but their movement is

limited by their neighbors except if a

vacant site exist in their vicinity

The diffusion rate depends on the jump  

frequency and the vacancy 

concentration



Point defects in a crystal: why?

Introduction of a defect

 Increase of the internal energy of the system (formation energy of the defect)

 increase of the entropy of configuration of the system (the defect can occupy 

different locations of different types in the crystal)

Free energy of 

the system

F = E  TS

Under equilibrium conditions, solids always possess point defects

E
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Defect concentration
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Point defects: examples

(1) Vacancy  V

(2) Self-interstitial  I

(3) Interstitial impurity  Ai

(4), (5) substitutional impurity  As

Arrows show the local stress introduced by 

the point defects



Diffusion mechanisms

Vacancy diffusion

(Ex: self- and heterodiffusion

in substitutional solid solutions)

Interstitial diffusion 

(Ex: heteroatoms in interstitial 

solid solutions, transitions 

metals in Si)

Materials flow (atoms) is opposite 

to the vacancy flow direction



Diffusion in Si

d: vacancy

a: direct interstitial

b: indirect interstitial (intersticialcy)

e: dissociative Ai + V  As

f: kick-out Ai  As+ I (indirect interstitial )

c: ring

Complex diffusion 

mechanisms

Diffusion of iron in Fe1-xO via a 4:1 cluster (4 vacancies 

and 1 interstitial): The interstitial and one atom fills two 

vacancies, while one atom goes into a new interstitial 

position between the new (moved) set of vacancies. 



Diffusion: atomistic approach

A simple model of crystal

Boltzmann distribution

The probability to find an atom in a given position in the crystal varies

exponentially with () the potential energy of this atom in this position divided by

the Boltzmann constant k and the temperature T

Crystal sites 
(minimum energy)

Ep

a

Potential energy 

of atoms

(x)

Lattice parameter

P(x) ~ exp[Ep / kT]



Diffusion: atomistic approach

Crystal sites 
(minimum energy) +

Gm

a

Potential energy 

of atoms

(x)

+ =  = 

 same jump rate in directions (x) and (+x)

Equilibrium








 
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kT

Gmexp0

Gm: energy barrier                     

: Jump rate (jump.s-1)

0: attempt frequency 

~ Debye frequency

Random motion

No flux
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



: geometrical factor

a: jump distance

0: attempt frequency  (~1013 s-1)

ΔGm: free enthalpy of migration

Em: migration energy

D0 ~ 10-2 cm2 s-1
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Diffusion assisted by defect

pd=probability of defect



Variation with temperature

D = CdDd = CdDd 0exp(-Hm/kT)

Dd Diffusion coefficient of the defect

H = Hf + Hm (= Q activation energy)

Hf = enthalpy of formation of the defect

Hm = enthalpy of migration of the defect

pure Interstitial: H = Hm

Vacancy: H = Hm + Hf
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Correlation

Auto diffusion:       D = CdDd

Tracer diffusion:    D*= f D = f Cd Dd

f = correlation factor

▪ f=1 for interstitial mechanism

▪ f<1 if diffusion vehicle: vacancy, 

divacancy, self-interstitiel

▪ f: complex function of T and C for alloys
 Nastar et al , Phil. Mag. 2000



2nd Fick’s law
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Fick’s second law of diffusion - mathematics

• From the matter conservation, the 
change in concentration is given by the 
gradient in flux density:

• Fick’s first law applies in each point 
along x, and we may thus insert for the 
flux density J so as to get:

• If D is independent of c, we may 
simplify:

• Especially the last equation may be 
solved for many practically achievable 
geometries and boundary conditions.  
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These are different versions of 

Fick’s second law of diffusion  

The “bible” of solutions to Fick’s 

second law is J. Crank (1956); 

“Mathematics of diffusion”



Fick’s second law

Non-steady state diffusion: Particular solutions

1: « Instantaneous source » 2, 3: « Constant source »



Diffusion: solution of the Fick’s law
Important laws to remember

DtL 

Average diffusion length Coefficient of diffusion Diffusion time

Diffusion coef. of species
Number of defects Diffusion coef. of defect

dd DnD 

Something else ? 



Diffusion and driving force



Diffusion and driving force

v=MF

Why (and when) the drunk man will reach the “reverbere”? 

Einstein Nernst-Einstein 

F
kT

CD
CJ  vtDR rn 6



F: driving force+
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Diffusion: atomistic approach

(+x): transport rate (at.s1)

v: transport velocity (at.cm.s1)

J: diffusion flux (at.cm2.s1)

C: atom concentration (at.cm3)

If the jump frequency varies linearly with F, v = a(+x)
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Nernst Einstein relation



D = pda2

a: jump distance 

p: probability to find a defect

: jump rate

Everything which affects 

 and p will affect D

The mass transport is 

characterized by  the flux

Quantity of atoms which pass 

a surface unit in unit of time

F
kT

CD
J 

Diffusion: atomistic approach



Diffusion flux, mobility, Onsager
J (at s1): particle flux = number of particles that are going through a surface unit
(section) per time unit

J proportional to the number of particles (C) and to their
mobility (M) or J proportional to L (Onsager coefficient)

C: particle concentration in the matrix, F: driving force

M: mobility of uncharged particles in a given matrix ,             
1/M: friction coefficient, v=MF = particles’ velocity (m s1)

D (m2 s1): diffusion coefficient

If several components (elements, 
vacancy…), Onsager equations:

LFCMFJ 


k

kkki FMCJ

If several mechanisms and/or diffusion 
paths with different mobility:


j

jiji FLJk: mechanisms, 

paths

j: components
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F
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Driving force: an example
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Nernst Einstein equation
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Driving force =                         

difference of chemical potential



Diffusion flux and diffusion equation

Driving force = minimum chemical potential 

“”  atoms diffuse in the direction of decreasing chemical potential

Nernst-Einstein equation

Assuming D = constant and an ideal solution (or non-ideal diluted solution) 

  = 1,  = kBT ln(C)

Fick’s equation = random motion                                 
diffusion depends only on concentration

 
x

C
D
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C
DCkT

xkT
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J
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
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ln
1(()ln(




F is called the thermodynamic factor solution

Di=FD is the intrinsic diffusion coefficient

If the composition is constant    = 1,  = kBT ln(C)

Thermodynamics

Kinetics



Nernst-Einstein equation for charged particules

ucFa
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c
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Electrical conductivity : Fa Faraday constant (96500 C/mol), u mobility, c concentration

General transport equation: 

linear relation between flux J and driving force, gradient of electrochemical potential η,

both chemical (μ) and electrical () potentials can act as driving forces (L: Onsager coefficient):

Uncharged species: only chemical potential term relevant, process reduced to pure diffusion:

Comparison with Fick's first law permits to identify:

Conversely, if no noticeable chemical potential variation: electrical field remains only driving force. 

Fulfilled for solids with high charge carrier concentrations: 

metals, fast ion conductors, highly doped systems!

Converting the particle flux into a current density:

Ohm’s law: LFa
2 corresponds to electrical conductivity

Nernst-Einstein equation between diffusion coefficient and mobility (in cm2.s-1V-1):



Lattice (volume, bulk) diffusion 

in oxides



Diffusion behavior of various materials

Si

Metals

oxides

Tm = melting temperature # bounding energy 

Melting diffusivity for various materials 



Diffusion behavior of various materials

Si

Metals

oxides

Activation energy for various materials 



Diffusion: rules of thumb










mT

T
D ~ constant

Empirical rules

For a given crystal structure and a given bond type   

(for a given class of materials)

D(Tm) ~ constant, Q/RTm ~ constant and D0 ~ constant

The diffusion coefficient of all materials with a given crystal structure and 

bond type will be approximately the same at the same fraction of their 

melting temperature

If melting temperature (Tm) 

 Bond strength  (Hm )                                                                

 Formation energy of defect  (Hf ) = concentration of defects 

 Coefficient of diffusion 



Rules of thumb: examples

Bulk self diffusion in pure close-

packed (fcc and hcp) metals

Diffusion mechanism: vacancy 

Empirical rules 

1- Diffusion coefficient at the melting 

temperature (Tm) is roughly constant.

D(Tm) ≈ 10-8 cm2/s

2- Activation energy scales with the 

melting temperature

Q / RTm ≈ 18

3- Pre-exponential roughly constant

D0 ≈ 10-1 cm2/s

Bulk self diffusion in oxides

D(Tm) ≈ 1010 cm2/s

Q / RTm ≈ 20-25

D0 ≈ 10-3 cm2/s

César’s thumb in Marseille



Diffusion in oxyde: 

overview

Diffusion coefficients: 

13 order of magnitude

Activation energy: 

0.5-8 eV

Different structures, 

Different defects, 

different mechanisms



Diffusion of various 

elements in Si

Large variations                

16 orders of magnitude

Fast elements
Ni, Co, Cu, Fe, H

Intermediate elements
Au, Pt, Zn

Dopant elements 
B, P, As, Sb                   

Close to Si



First, and most fundamentally: ceramics have charged ionic species.

Hence, electrostatic and space charge effects are basic phenomena in

ceramics that do not appear in metals.

In ceramics, the transport of matter is tightly coupled to the transport of

charge.

Ambipolar diffusion: chemical diffusion is limited by the slower species.

Second, formation energies of intrinsic defects are often high in ceramics.

Hence, defect concentrations are often dominated by impurities,

particularly aliovalent ( in valence) impurities, where the requirement of

overall charge neutrality induces the creation of vacancies, interstitials or

electronic carriers.

In oxides, there is the additional possibility of diffusion control by the

oxygen partial pressure.

Differences between metals and ceramics



Defects in oxides: Kröger-Vink notation

Frenkel disorder in AgCl

Schottky disorder in NaCl

Anti-site in CuAu

 Cl

'

Na VVnil

 iAgAg AgVAg '

AuCuCuAu CuAuCuAu 

Schottky and Frenkel Defects:
Schottky defect : vacancies on both cation and anion sub-

lattices. Because mass, site, and charge numbers remain

balanced, these vacancies are always in stoichiometric ratio. 

Loss of ions within crystal lattice: density of the solid decreases.

Frenkel defect : vacancy on either cation or anion sub-lattice

along with an interstitial site. Frenkel defect pairs maintain a 

balanced mass, site, and charge stoichiometric ratio. Since ions 

remain withinin the lattice, the density remains the same.

Kröger-Vink Notation: 
M corresponds to the species, which can be ions (Na, Ag, O, 

Cl…), vacancies V, electrons e and electron holes h. 

S indicates the lattice site that the species occupies. For 

instance, Au might occupy a Cu site. The site may also be a 

lattice interstice, in this case the symbol « i » is used. 

C corresponds to the charge of the species relative to the 

occupied site. To indicate zero charge, × is sometimes used. •

indicates a positive charge, while ′ signifies a negative charge.

Defect reactions: imperative to keep mass, site, and 

charge balance in each reaction (mass conservation and electro-

neutrality). 

C

SM



Diffusion in oxides: overview



How does D vary with T and pO2?
• We start by analysing the influence from the concentration of defects.

• Example: Vacancies in an elemental solid:

• Example: Oxide ion vacancies in a non-stoichiometric oxide, e.g. MaOb-δ:

• Example: Oxide ion vacancies in an acceptor-doped oxide, e.g. Ca-

doped ZrO2-δ:

)exp()exp()exp(
RT

H

R

S

RT

G
N ddd

d







61
0

31

04
16131

4
1

22 3
exp /

O
vO//

,vO

/

O

//

vOOd )p
RT

ΔH
()K(p)K(] [VN  



][A][ //

MOV 

   eVO
 2













 














 














 








kT

H

k

S

kT

G
KPeV OOO

O

VVV

VOO

000

2/12 expexp]][[
2

Defect equation: Electroneutrality: 

Law of mass action: 

  O

x

OZr

ZrO
VOaCCaO 2

eVOO O

x

O
  222

1

pO2 dependency

No pO2 dependency



Arrhenius plots in crystalline solids

Hm/R
2

2

a) Extrinsic (dopants/impurities)

b) Intrinsic (« high » temperature)

c) Defect association (« low » temperature)



Brouwer (Kröger-Vink) diagrams: electronic disorder

Kofstadand Norby: Defects and transport in cristalline solids



Diffusion in oxides

Non-stoichiometric oxides

Transition metal oxides with NaCl structure, such as NiO, CoO, MnO, FeO are 

generally metal-deficient: M1-dO. 

The concentration of cation vacancies can be high: d ~ l0-4 in NiO, 10-1 in FeO: 

normally intrinsic behavior (metal vacancy concentration >> impurity concentration). 

Deviation from stoichiometry depends on temperature and oxygen partial pressure.

 DM/DO  104 – 105

In oxides with fluorite structure (CeO2,ZrO2, ThO2, UO2), majority defects are oxide

ion vacancies for oxygen deficiency (MO2-x) and oxide ion interstitials for oxygen

excess (MO2+x) . 

 DM < DO

d

d

dA DdfD ][* 

“Stoichiometric“ oxides

Stoichiometric oxides (MgO, Al2O3, ...) show generally extrinsic behavior. 

Given the high enthalpy of formation of Schottky defects (theory: ~ 8 eV for 

MgO), the intrinsic defect concentration is very low: some ppm of impurities

are sufficient to impose the extrinsic regime, so that and   
 OM V"V

**
OM DD 

F elAtDD
~



Lattice diffusion in 

stoichiometric oxides



Diffusion in stoichiometric oxides
Effect of impurities or dopants

MgOCr2O3

MgO

High defect formation energy  extrinsic regime  impurity controlled diffusion



Diffusion in stoichiometric oxides
AM Huntz, J. Phys. III, 1995

Impurity controlled diffusion = scattering of experimental results 

Volume diffusion in Al2O3



Lattice diffusion in 

non-stoichiometric oxides



Self diffusion in non-stoichiometric oxides:

cation versus oxygen diffusion

M1-dO (NiO, CoO, MnO, FeO): DM>DO MO2-d (CeO2, ZrO2, ThO2, UO2 ): DM<DO



Ionic and electronic defects in Ni1-dO

Rocksalt (NaCl) 

structure of NiO, 

CoO, MnO, FeO

Non stoichiometry (M1-dO   major defects: VM’’, VM’ 



Self-diffusion in non-stoichiometric 

oxides: Cation diffusion

Non stoichiometry (M1-dO = 

reaction with oxygen gas

  )1(2/1

2

' )(  nn

M OPV

Cation diffusion in rocksalt

structure by vacancy:

• Main “natural” vacancy = VM’’

• + association of defects 

(NiO, CoO ): VM’’ + h▪
 VM’

• MnO, FeO : more complex

  6/1

2

6/1

2

" )()( OPOaVM 

 hOVO x

OM 2"

22
1

"

MV

  4/1

2 )(OPVM 

Double charged vacancy

Single 

charged 

vacancy

Cation diffusion in rocksalt structure:  low pressure = VM’’, high pressure = VM’



Large deviation of stoichiometry and diffusion

 Defect clusters



Oxygen diffusion in UO2+x

 low T: constant number of 

interstitials (extrinsic) 

determination of migration 

enthalpy Hm

 high T: determination of  

Hm+ ½ Hf

0

f

''

iO

x HOVO
O

 

Fluorite structure

(CeO2,ZrO2, ThO2, UO2): 

- MO2-d : VO
°°

- MO2+d : Oi’’

Cation diffusion in UO2

 Vacancy (UO2+d = high P(O2))

 Interstitial (UO2-d = low P(O2))

Self-diffusion in non-stoichiometric oxides

Oxygen diffusion in UO2±d



Cation diffusion in Fe3O4 (Fe3-dO4)

 Cation vacancy (Fe3-dO4= high P(O2))

 Interstitialcy (Fe3+dO4 = low P(O2))

Self-diffusion in non-

stoichiometric oxides

Cation diffusion in Magnetite

  6/1

2
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Diffusion in oxides glass



Diffusion in oxides glass

Glass (network) former: slow diffusion

Glass modifier : fast diffusion



Interdiffusion in oxides:



Diffusion in alloy: Interdiffusion
Pelleg, Diffusion in ceramics, 2016



Interdiffusion in metallic alloy
Intrinsic flux (crystal lattice frame):

Intrinsic flux (crystal lattice frame):

Porter and Easterling, Phase 

transformation in metals and 

alloys, 1992



Interdiffusion in metallic alloy

Porter and Easterling, Phase 

transformation in metals and 

alloys, 1992



Ambipolar diffusion

Electrical neutrality

Non ideal solution 

 Diffusion controls by the slower species

Ambipolar diffusion = two diffusing species of different signs



Diffusion in polycrystalline 

oxides



Diffusion in polycrystalline solids

Diffusion models:
• Dislocation = cylinder with radius r

• Grain boundary = slab with a width d

• …  



Penetration curves in polycrystalline solids

Theory
Experiment: 63Ni in CoO at 1230 K

M. Le Gall et al. Phil. Mag. 1994

Radiotracers (self-diffusion, impurities) and radiography



Diffusion in polycrystals

Grain boundaries

Different types of grain boundaries 

 different GB diffusion coefficient



Fisher’s model of grain boundary diffusion

gb slab of thickness d with                          

diff. coeff. Dgb >> D

Solution of Fick’s laws (Suzuoka)

d < (Dt)1/2 < d/2

Dgbd = (dlnC/dx6/5)-5/3 x (4D/t)1/2 0.03x0.578

Grain boundary diffusion
Fisher’s model, Leclair, Wipple, Suzuoka

Structures of a bicrystal of 

alumina and a Y-doped alumina



Type A

(Dt)1/2 >> d

Deff = aDgb + (1-a) D

Type B

d < (Dt)1/2 < d/2

d Dgb, D

Type C

(Dt)1/2 < d

Dgb

Diffusion in polycrystals

Hart



Grain boundary diffusion
Fisher’s model with segregation

v

gb

C

C
s 





Difficulties in gb diffusion in ceramics

• Precision and reproducibility of the data are often poor, 

usually ascribed to impurities in the sample. 

• When the concentration of intrinsic defects is 

negligible, transport properties depend on the nature 

and concentration of impurities, which is often

unknown. 

• Interfaces are particularly likely to be affected by these 

considerations, because the segregation energies for 

defects to interfaces are frequently very large 

 concentration of defects or impurities at an interface 

can be very great, even if the bulk concentration is low. 

• Since the segregation energies vary from defect to 

defect, it is likely that the grain boundary core will be 

charged 

 space-charge layers enriched of the defects of 

opposite sign, which were more weakly attracted to the 

boundary.



Diffusion in polycrystalline alumina

Strong effect of segregation on GB diffusion

Higher activation energy for 

GB than for lattice diffusion !!!
Strong segregation of Y  GB 

diffusion lower for Y doped Al2O3



Diffusion / surface / interface 



Effet de la surface de nanofils sur la 
diffusion du Si

• Surface = puit de défauts (lacunes, 

interstitials)

• Nanofils = rapport surface / volume 

depend de la taille des nanofils. 

• meme diffusion dans les nanofils et 

le volume

 Pas d’effet pour les nanofils de 70nm!!!

Effet de surface sur l’auto-diffusion du Si

Südkamp, JAP, 2017

Si isotop structure of a 400 nm diameter Si 

nanowire (NW) before annealing

30Si concentration depth-profiles after annealing at 850C for 

48 h for 70 nm diameter NW compared to bulk Si layers.
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Some databases and books 



Oxides = ionic solids

Electrostatic and charge effects (ambipolar diffusion)

Non stoichiometric oxides: diffusion controlled by non stoichiometry

Near stoichiometric oxides: extrinsic behaviour (impurity-dominated), 

scattered experimental results

Diffusion mechanisms by vacancies and interstitials

Oxygen partial pressure dependent

Defect thermodynamics

Very sensitive to microstructure and impurities

Diffusion in oxides: some conclusions

 2nd école “Diffusion dans les solides”  Marseille 2019 

Diffusion in liquid, glass…  This workshop


