

Thin film mechanics Stability and delamination

Etienne Barthel

Thin film mechanics

Outline

□ Residual stresses in thin films

- □ Thin film fracture and delamination
- □ Thin film indentation

I – Residual stresses in thin films

Telephone cord delaminations

6

Misfit strains

Mechanisms : the misfit strains in thin films may be due to

- thermal contraction
- non equilibrium deposition (atomic bombardment) or phase transformations (solidification, resin curing, martensitic transformations)
- plastic deformation (eg shot peening)

Thin films & coatings

- Geometry: thin film = small h
- Mechanical responses: film/substrate contrast
- Loading: residual stresses

Elastic response

- stress is linear with deformation
- E is elastic modulus

 σ

 ϵ

F

 \overline{A}

 δL

Energy density $\mathcal{E} = \frac{E\epsilon^2}{2} = \frac{\sigma^2}{2E}$ • quadratic

Beam bending

$$\frac{l+dl}{l} = \frac{\alpha(R+dR)}{\alpha R} = 1 + \epsilon$$

$$\frac{1}{R} \simeq \frac{\delta}{l^2}$$

curvature

elastic energy density

$$\mathcal{E} = \frac{1}{2} E \epsilon^2$$

$$\mathcal{E}_{\rm tot} \simeq ElH\epsilon^2 = ElH\left(\frac{H\delta}{l^2}\right)^2 = l \ EH^3 \ \left(\frac{\delta}{l^2}\right)^2$$

bending stiffness

Residual stresses – Stoney

Stoney 1909

In-situ measurement of the stress

Stoney formula :

$$\Delta \sigma = \left(\kappa_{after} - \kappa_{before}\right) \frac{E_s}{6\left(1 - \nu_s\right)} \frac{t_s^2}{t_f}$$

Relation between curvature of sample and distance between spots :

$$\kappa(t) = \frac{\cos(\alpha)}{2L} \left(1 - \frac{D(t)}{D_{ref}}\right)$$

Displacement D(t) of the spots is found by image correlation :

$$y_{1...6}(t+1) = \frac{D(t)}{D(t=0)} y_{1...6}(t)$$

X₆...X₁

y₁

y₂

y₃

Y4

y5

y6

Precision on curvature is K_{min}=6 x 10⁻⁵ m⁻¹

Experiments – stress in Mo layer

Faou et al. Thin Solid Films (2013) 222

13

Microstructure and residual stresses

Mo, -75V

MoO_x , -75V

Faou et al. Thin Solid Films (2013) 222

Stress measurements – Stoney method

The stress "relaxation" on the first run is usually observed for magnetron films (Si₃N₄, SnZnO_x, ...)

X Ray Determination of Residual Stresses

Not possible on amorphous materials (SiO₂, SnO₂)

F. Conchon, Pprime

16

II – Adhesion/fracture

17

Crack propagation – Energy release rate σ

Energy release rate

$$\mathcal{G} \equiv -\frac{d\mathcal{E}_{mech}}{dA}$$

A is the *fracture* area $\mathcal{E}_{mech} = \mathcal{E}_{elas} + \mathcal{E}_{pot}$

• Equilibrium

$$\mathcal{G} = w$$

$$|F| = wb$$

The Double Cantilever Beam (DCB)

Impacts the stability

(A)symmetric peel test – Elastic strip

- ethylene propylene rubber / PMMA + thin EPR film
- 10 cm wide / 12 mN / applied 60 mn
- a: no propagation / b: crack speed 2 $\mu\text{m/s}$

Figure 6. (a) Peel test with F just low enough to prevent cracking; (b) peel test at the same stress now fractures.

K. Kendall, J Adhes Sci Technol 8 (1994) 1271

Optical functionalisation

DCB adhesion energy measurement

experimental set-up

Top view

DCB – results

Barthel et al. Thin Solid Films, 2005

Impact of underlayer

Deposition is not at equilibrium

Silver on oxide:

Ambiant Temperature High

Temperature

Ag does not wet ZnO; ZnO wets Ag

History matters:

cf also Lin and Bristowe PRB 2007 28

2010/06/18 14:28:02

Lentille MX(G)-5040Z : Normal : x350 Echelle 871.430 μ m Resolution 0.545 μ m

= 52.927

Elementary fracture mechanics

Available elastic energy:

 $G_0 = \frac{1}{2}h\frac{\sigma^2}{E}$

 Adhesion energy:

Equibiaxial film stress

Threshold – buckling stress – circular buckle

Buckling stress

Circular blister – Energy release rate 1 Circular, Radius R 0.8 $-(\sigma - \Delta \sigma)$ -σ hİ 0.6 2RG/G_o 0.4 **Buckling stress** $\sigma_c = \frac{\mu^2 D}{R^2 h}$ 0.2 0 50 0 10 20 30 40 60 $D = \frac{Eh^3}{12(1-\nu^2)}$ Residual Stress, σ / σ_c

after Moon et al. JMPS (2002)

32

Fracture – mode l

Electrostatic – curvature effect

Fracture – mode II

Fracture – crack path selection

https://exarc.net/ark:/88735/10543

J. Pelegrin (CNRS silver medal in 2017)

K.M. Liechti and Y. S. Chai, Journal of Applied Mechanics 59 (295 (1992) J.W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1992)

Blister – impact of mode mixity

Pinning by local conformation of the buckle

Faou et al. PRL (2012)

Channel cracks

Saint-Venant principle

 $\Delta u = 0$

$$u(x,z) = e^{ikx}\tilde{u}(z)$$

$$\Delta u(x,z) = \left(\frac{\partial}{\partial x^2} + \frac{\partial}{\partial z^2}\right) u(x,z) = e^{ikx} \left(-k^2 + \frac{\partial}{\partial z^2}\right) \tilde{u}(z) = 0$$

 $\tilde{u}(z) \propto e^{\pm kz}$

Energy release rate for a Griffith crack

Sol-gel silica films

Kappert et al. Soft Matter 2015

45 SIMM

Hu & Evans Acta metall. 37 (1989) 917

46

Coupling to the substrate

Tsui & Vlassack

