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Introduction

Introduction

A theoretical physicist’s view of Magnetite: the Ising model

I will talk about glasses at the same level of abstraction...
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Introduction

A logical path towards a theory of the glass transition

Theory of second order PT (gas-liquid)

• Qualitative MFT (Landau, 1937)
Spontaneous Z2 symmetry breaking
Scalar order parameter

• Quantitative MFT (exact for d →∞)
Liquid-gas: βp/ρ = 1/(1− ρb)− βaρ

(Van der Waals 1873)
Magnetic: m = tanh(βJm)

(Curie-Weiss 1907)

• Quantitative theory in finite d (1950s)
(approximate, far from the critical point)

Hypernetted Chain (HNC)
Percus-Yevick (PY)

• Large-scale fluctuations
Ginzburg criterion, du = 4 (1960)
Renormalization group (1970s)
Nucleation theory (1960s)

Theory of the liquid-glass transition

• Qualitative MFT (MPV, 1987; KTW, 1987)
Spontaneous replica symmetry breaking
Order parameter: overlap matrix qab

• Quantitative MFT (exact for d →∞)
Kirkpatrick and Wolynes 1987
Kurchan, Parisi, FZ 2012

• Quantitative theory in finite d
DFT (Stoessel-Wolynes, 1984)
MCT (Bengtzelius-Götze-Sjolander 1984)
Replicas (Mézard-Parisi 1996)

• Large-scale fluctuations
Ginzburg criterion, du = 8 (2011)
Renormalization group (in progress)
Nucleation (RFOT) theory (KTW 1987)
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Replicas (Mézard-Parisi 1996)

• Large-scale fluctuations
Ginzburg criterion, du = 8 (2011)
Renormalization group (in progress)
Nucleation (RFOT) theory (KTW 1987)

Francesco Zamponi (CNRS/LPT-ENS) Mean field theory of yielding The StatPhys Cornucopia 2 / 16



Introduction

Goal

Plasticity and yielding of glasses are extremely interesting... you know why!

Goal: construct a microscopic statistical mechanics treatment of glasses under shear

In this talk I will focus on the solid phase, to which a fixed shear strain γ is applied
adiabatically: a thermodynamic formulation is possible [Mezard, Yoshino, 2010]

I will not consider the flow regime where γ̇ > 0: need a fully dynamical treatment. Work in
progress. Contact with MCT?

[Fuchs, Cates 2002, · · · , Agoritsas, Biroli, Urbani, FZ, 2017]
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Methodology

Main methodological ingredients

1. General scheme for thermodynamics in glasses: the “state following” formalism

[Kirkpatrick, Thirumalai, Wolynes 1987-1989]

[Franz&Parisi, Monasson 1995]

2. Practical implementation: exact solution of glasses in the mean field limit d →∞

[Charbonneau, Kurchan, Parisi, Urbani, FZ 2012-2015]
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Methodology

The RFOT/MCT/energy landscape scenario for glasses
[Goldstein, Stillinger, Weber, Heuer et al. 1969 - ...]

[Bengtzelius, Gotze, Sjolander et al. 1984 - ...]

[Kirkpatrick, Thirumalai, Wolynes 1985-1989]

glass

{ri}

E

{Ri} {Xi}

supercooled liquid energy

basin

Consider an equilibrium liquid configuration R = {Ri} of N particles: P(R) ∝ e−βgH(R)

Make a copy of the system undergoing some dynamics, X (t), such that X (t = 0) = R.

Supercooled liquid:
〈
[X (t)− R]2

〉
→ Dt

Glass:
〈
[X (t)− R]2

〉
→ ∆r

In the glass, X (t →∞) reaches an equilibrium restricted to a metastable state
This restricted equilibrium can be followed at different temperature, density, strain...
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Methodology

State following

Restricted equilibrium with constraint
〈
(X − R)2

〉
= ∆r

Z [T ,∆r |R] =
∫
dXe−βH[X ]δ[(X − R)2 −∆r ]

Glass free energy:

Fg [T ,∆r |Tg ] = −T
∫
dR e−βH[R]

Z
log Z [∆r |R]

[Franz&Parisi, Monasson 1995]

Technically, the average of the logarithm is computed using the replica method

The problem becomes analytically tractable in the mean field limit of d →∞
Only the first virial correction survives in this limit

[Frisch, Rivier, Wyler 1985-1988]

Generalised to the state following scheme, exact computation of Fg for arbitrary potential
[Charbonneau, Kurchan, Parisi, Urbani, FZ 2012-2015]

[Rainone, Urbani, Yoshino, FZ 2015]

The dynamics can also be solved exactly ⇒ MCT-like equations
[Barrat, Burioni, Mezard 1997]

[Maimbourg, Kurchan, FZ 2015]
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Methodology

Practical implementation: simulation and experiment
Main difficulty: by definition, we cannot equilibrate in the deeply supercooled liquid phase

However: play with time scales

Cool the system slowly; lowest equilibrium temperature when τα(Tg ) = τprod

Use smart techniques (vapor deposition, swap algorithm...) to access lower Tg

Once the system is equilibrated at Tg , work on time scales τexp � τprod = τα(Tg )

The system is effectively confined in the glass state selected by the last equilibrated
configuration R
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Results: jamming and yielding of hard spheres

Phase diagram of unstrained hard spheres

equilibrium liquid

stable glass

marginal glass

jamming line

d
/p

ϕ̂ = 2dϕ/d

Theory: monodisperse HS in d =∞, state following
[Rainone, Urbani, Yoshino, FZ 2015]

Numerical simulation: polydisperse HS in d = 3, swap + MD
[Berthier, Charbonneau, Jin, Parisi, Seoane, FZ 2016]

Experiment: shaken bidisperse granular system
[Seguin, Dauchot 2016]
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Results: jamming and yielding of hard spheres

Applying shear strain to the glass: theory
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Dilatancy, shear yielding, shear jamming, marginal stability
[Urbani, FZ 2017]
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Results: jamming and yielding of hard spheres

Applying shear strain to the glass: theory
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Phase diagram of strained glass – a new critical point
[Urbani, FZ 2017]
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Results: jamming and yielding of hard spheres

Applying shear strain to the glass: numerical simulations

[Jin, Yoshino 2017]
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Results: jamming and yielding of hard spheres

Applying shear strain to the glass: numerical simulations
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[Jin, Urbani, Yoshino, FZ, preliminary]

The shear yielding point is a homogeneous spinodal in mean field
A first order transition in 3d? (shear banding = nucleation?)

[Jaiswal, Procaccia, Rainone, Singh 2017]
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Results: jamming and yielding of hard spheres

Applying shear strain to the glass: numerical simulations

[Jin, Urbani, Yoshino, FZ, preliminary]
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Results: jamming and yielding of hard spheres

The marginally stable phase: additional results

Analytical prediction about the behavior of non-linear elastic moduli σ =
∑

n µnγ
n:

(δµn)2 ∼
V (2n−1)/3

V

Breakdown of standard elasticity
[Biroli, Urbani, 2016]

Analytical prediction for the distribution of avalanches, with P(S) ∼ S−τ at small S
τ = 1 above jamming, τ = 1.41 exactly at jamming
Compares well with numerics around jamming

[Franz, Spigler, 2017]
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Conclusions

Summary

A single mean-field theoretical framework (d =∞) to describe: dilatancy, shear yielding,
shear jamming, marginal stability, plasticity, avalanches, non-linear elasticity...

Yielding is a homogeneous spinodal: challenging to go beyond mean field

Theory relies on a very strong separation of time scales: τexp � τprod = τα(ϕg )

Achieved in numerical simulations by swap algorithm: agreement with theory,
sharp phase transitions

Difficult to achieve in colloidal/granular glasses: much more difficult to separate the
various phenomena
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Conclusions

Perspectives

Extension to soft spheres:

Localised excitations in low d

High energy states: localised plasticity, then soft yielding

Low energy states: no plasticity, sharp yielding

Extension to sticky hard spheres:

Gel phases, two step yielding, ...

Dynamical regime:

Write dynamical equations in d →∞, out of equilibrium with finite γ̇: almost done

Solve these equations... very difficult!

Field theory of the yielding transition:

Spinodal with disorder: study upper critical dimension, susceptibilities...

Thank you for your attention!
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Conclusions

THE END
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