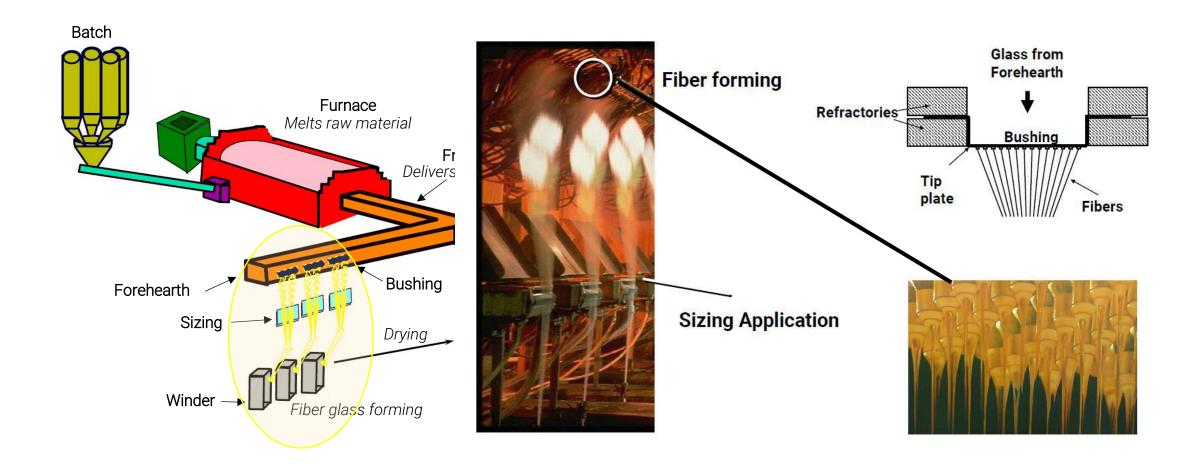

TOWARDS SUSTAINABLE COMPOSITES: INNOVATIONS IN CIRCULAR AND LOW-CARBON GLASS FIBER MANUFACTURING

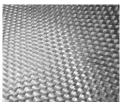
Amandine Ridouard, Owens Corning, Chambéry, FR



GLOBAL S&T FOOTPRINT

GLASS FIBER MANUFACTURING

17th International Seminar on Furnace Design - Operation Process Simulation (2025), Bruno Purnode, OC Granville USA



WHAT WE MAKE

Knitted fabrics

Wind, pipe, thermoplastic composites, industrial, recreational

Woven fabrics

Wind, pipe, thermoplastic composites, industrial, recreational

Complexes

Wind, pipe, thermoplastic composites, industrial, recreational

Continuous filament mat

Marine, transportation, construction

Chopped strand mat

Marine, transportation, recreation, corrosion resistance, construction

Continuous Fiber Type 30® single end roving

Chemical and sewage, oil, water processing (pipe and tanks), industrial (high-pressure vessels, pultruded items), wind energy, aerospace, ballistics, transportation (muffler filling), electrical (optical cable)

Continuous fiber multi-end roving

Construction (panels and translucent panels), corrosion resistant pipe and tanks, consumer (sanitary, recreational vehicles), transportation (headliner, body parts, semi-structural parts)

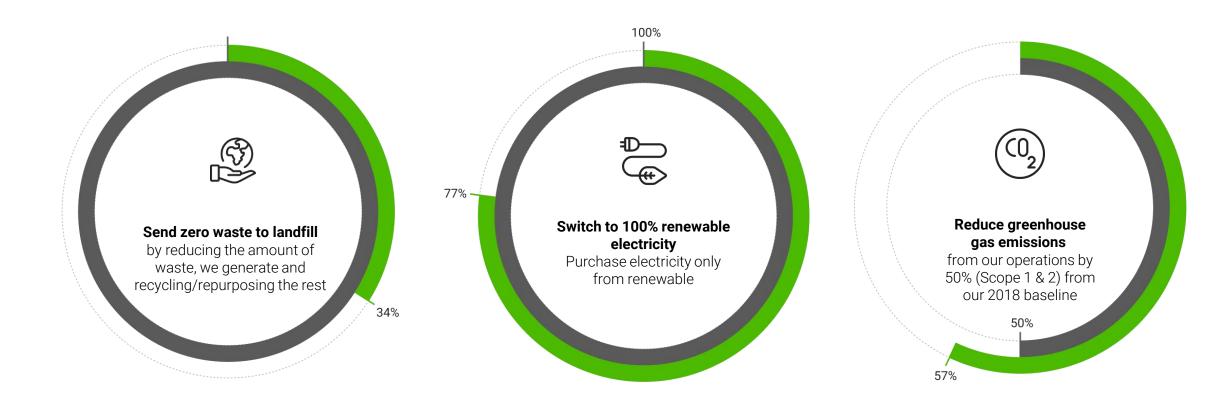
Chopped strand, dry-use

Automotive applications, electrical applications and industrial specialties

Chopped strand, wet-use

Building products (roofing and gypsum), industrial specialties

GLASS REINFORCEMENTS

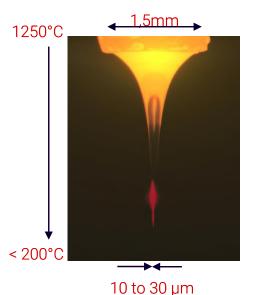


SUSTAINABILITY GOALS

2030 SUSTAINABILITY GOALS 2024 OC GR EU PROGRESS TOWARDS CLIMATE ACTION

For more information: http://sustainability.owenscorning.com/

^{*}Preliminary numbers subject to change pending publication of 2024 Sustainability Report.


2024 Progress*
 2030 Goal

PROGRESS ON GLASS FIBER CIRCULARITY THROUGH REMELTING

CHALLENGES FOR GLASS FIBER AND REINFORCED COMPOSITE RECYCLING THROUGH REMELTING

90

• Glass composition control → direct impact on glass viscosity

- 1. Viscosity stability required for fiberizing
- Compliance to ASTM D578 « Boron free modified E Glass compositions »
- Same Performance as standard product

Glass waste collection - viscosity variations

- Glass contaminants
 - 1. Ferrous & nonferrous metals damaging bushing (alloy)
 - 2. Non fusible particle causing bushing breaks
 - 3. Organic materials changing glass redox

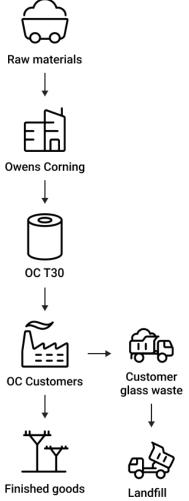
- → Too much glass viscosity variation in 2024
- ightarrow In 2025 effort with supplier to provide waste with stabilized viscosity

GLASS DESIGNED FOR A CIRCULARITY TODAY DISCOVER SUSTAINA® LOOP

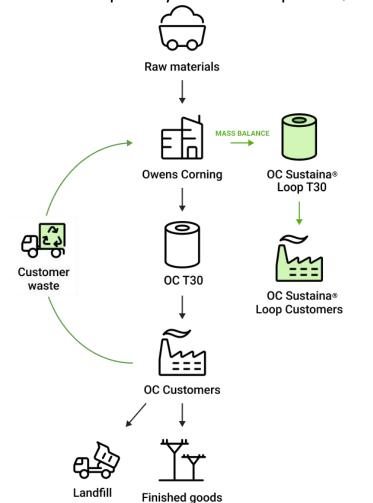
SUSTAINA® Loop is OC's
circular glass solution, made
with up to 100% circular glass
fiber through an ISCC+
certified mass balance
approach for circular,
traceable sourcing.

Produced in **L'Ardoise**, **France**, it **reduces waste** by integrating glass fiber waste with raw materials, enabling companies to **return waste for remelt**.

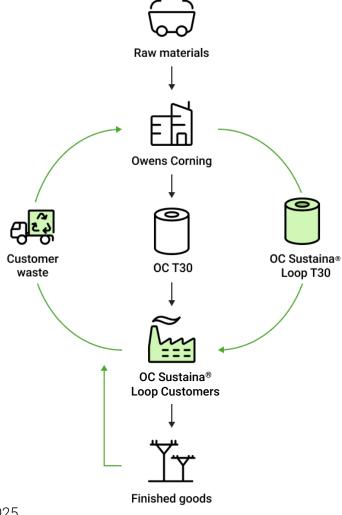
Fully compatible with Type 30[®] Long Fiber Thermoplastics and Single-End Roving products like SE4860, SE4849, SE4850, PULSTRAND[®] 4100 and SE1200.


Seamlessly replace conventional materials while delivering the same high performance as ADVANTEX® E-CR Glass.

WHERE WE ARE NOW


NEXT STEP

STANDARD ADVANTEX® GLASS



Industrial line capability at L'Ardoise plant Q4 2025

PROGRESS ON DECARBONIZING GLASS FIBER PRODUCTS

REDUCE GREENHOUSE EMISSION – USING H₂ COMBUSTION FOR MELTING

DECARBONIZATION

Alternative Fuels – Hydrogen

- H₂GLASS Co-Funded by European Union
- 4 years project: 2023-2026
- 23 partners from 8 countries
- Coordination: SINTEF Energy R&D
- 5 industrial glass manufacturing sites

Objective: H₂GLASS aims to create the technologies that glass manufacturers need to

- realize up to 100% H₂ combustion in their production facilities
- ensure the required product quality
- manage this safely

Ashreet Misha, Alex Lohse, Bruno Purnode, OC Granville USA Etienne Roux, Rino Fabris, OC Chambéry Fr

REDUCE GREENHOUSE EMISSIONS – USING H₂ COMBUSTION FOR MELTING

SUCCESSFUL TRIALS AT L'ARDOISE PLANT (GARD, FR)

Platform for trucks & electrolyzer

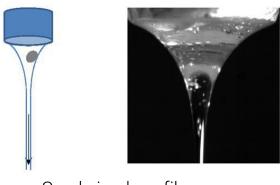
Two trials of 1-week done in 2024

- Full conversion resulting in low emission furnace operation
- No impact on product quality and plant efficiency

Ashreet Misha, Alex Lohse, Bruno Purnode, OC Granville USA Etienne Roux, Rino Fabris, OC Chambéry Fr

H₂ piping (500m) – outside/inside plant

HYDROGEN COMBUSTION TRIALS


NOV-24 & DEC-24, OC L'ARDOISE MELTER

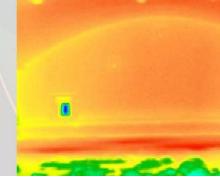
→ First successful industrial glass fiber production using only e-boost + Oxy/H₂.

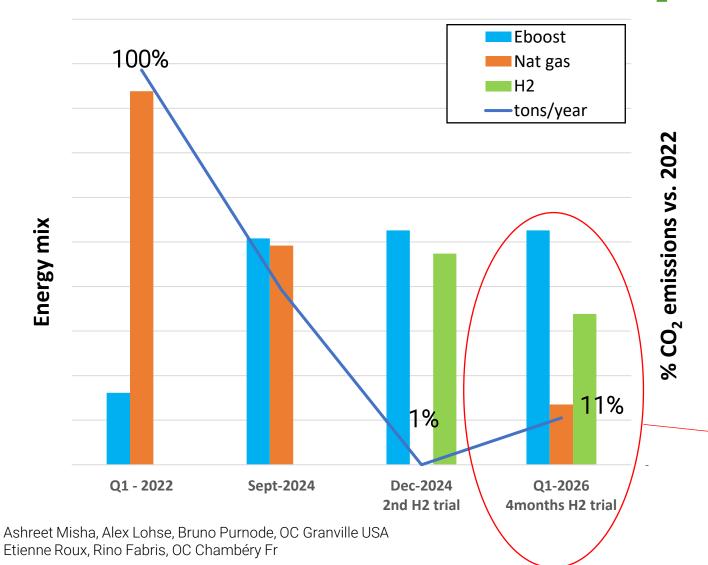
Key numbers:

- H₂ injected with 14 trailer rotations.
- 72h full Oxy-H₂ combustion, replacing Oxy-gas.
- \rightarrow Equivalent heat transfer of H₂ flame on bath heating vs natural gas flame.
- → No change on refractory temperatures.

Seeds in glass fiber

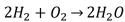
Flame visibility: NG/O2 VS H2/O2




Ashreet Misha, Alex Lohse, Bruno Purnode, OC Granville USA Etienne Roux, Rino Fabris, OC Chambéry Fr

HYDROGEN COMBUSTION TRIALS

OC L'ARDOISE MELTER, ENERGY MIXES & CO₂ REDUCTION


 \rightarrow Achieved up to 95% CO₂ reduction in melter emissions during Dec-2024 trial.

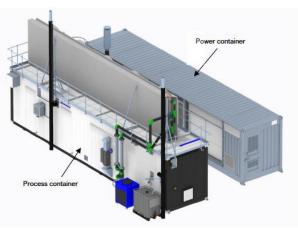
Target for next steps

Product of combustion with natural gas

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Product of combustion with H₂ gas

HYDROGEN COMBUSTION TRIALS


OC L'ARDOISE MELTER, ENERGY MIXES & CO₂ REDUCTION

Objectives:

- → Replacing H₂ supply from trucks to an electrolyzer = use "Green Hydrogen" sources
- → Run trials in a longer period of time = Verify reliability and running cost of electrolyzer
- \rightarrow Capture all learnings regarding O_2/H_2 flame and impacts on our melters : Glass quality, refractories impact effect on asset life

2022 2023 2024 2025 2026

- agreement
- external funding H₂glass
- project definition
- expectations
- OWENS (2 UNION POUR LA SCIENCE & LA TECHNOLOGIE VERRIÈRES

- burner math modeling
- burner cold test
- burner tests in pilot
- contract with AL

- work preparation at L'Ardoise plant
- 1st trials Nov
- 2nd trials Dec

- install electrolyzer in L'Ardoise site
- 4 months run with electrolyzer
- green H₂

CONCLUSION

- SUSTAINA® Loop: 100% circular glass fiber, industrial line capability in L'Ardoise plant.
- Decarbonization: Hydrogen combustion enables up to 95% reduction in melter CO₂ emissions
- Successful industrial production at plant using hydrogen and oxygen
- Next step: on-site green hydrogen production via PEM electrolyzer (2026) and process reliability and impact on glass quality
- Other approach → being sustainable by design
 - New glass composition developed for higher performance material Pierre-Emmanuel Bes de Berc Poster

