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Outline

® \What is there to be explained about the glass
transition and the viscous slowing down of
relaxation?

® Are there growing characteristic lengths associated
with glass-forming behavior?

® Theoretical approaches: in search of an effective
theory and an appropriate order parameter.



What is there to be explained
about the glass “transition” ?



Glass formation by cooling
a liquid (or a polymer)
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One of the most spectacular phenomena in
all of physics in terms of dynamical range
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Frequency-dependent dielectric susceptibility

(imaginary part) for liquid propylene carbonate
(Lunkenheimer et al., JCP 2001)



Dramatic super-Arrhenius temperature
dependence of relaxation times

log., (t/s)

(and viscosity)

Arrhenius plot of the reorientational time of

molecular liquids [Roessler et al., 2013]
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Nonexponential and multi-step
relaxation

Time versus frequency domain:
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Nonexponential relaxation (contd)
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Left, dielectric spectrum. Right, photon correlation spectroscopy.

Signature of a distribution of local relaxation times?



Dramatic temperature dependence of
relaxation time and viscosity

Arrhenius plot of the viscosity of
liquid ortho-terphenyl
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Tempting to look for a detail-independent collective explanation!



Interlude: Explanations of slow dynamics

® "Non-cooperative”:
Arrhenius T-dependence for
chemical relaxation time

<E .\‘ = > (("
T ~exp| = \ ,

with a roughly constant
activation energy E.

® "Cooperative”:
Critical slowing down of relaxation (approaching a critical point at T¢)

* Diverging correlation length: £ ~ |T — Tc’_y

* Diverging relaxation time: 7 ~~ £% ~ ‘T — Tc’_zy
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Interlude (contd.)

However..

® Viscous slowing down of relaxation seems of cooperative

(or collective) nature...

15 . 30
;
i 25t
10 °°°° — E T)
T ~ X E——
p ( T ) ~
5 s * 20
o &
% — =
S 5r . 3
15
0‘A///y/4,,,((/,/>>;;///////////// - 10
C °I ! | ]
05 1 5
T /T
g
molecular ¢  collective ?

e .. But with an activated T-dependence:

e.g., empirical fit to VTF formula
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Expected collective behavior, but...
large differences among glass-formers:

“Fragility”

Arrhenius plot with T scaled to T,
(Angell, 1993)
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Expected collective behavior,
but....

® No observed, nor nearby, singularity in the dynamics and the

thermodynamics.

e Correlation length obtained from the pair density correlation
function (structure factor) is small and does not vary with

tem peE rature.
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Static structure factor S(Q) of liquid
m-toluidine at several temperatures
from just above melting (Trm) to below
the glass transition (Ty).

[C. Alba-Simionesco et al.]
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Only significant change in thermodynamic
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What makes the problem interesting...

There are hints that glass formation involves

* some form of universality
* some form of collective/cooperative behavior

Yet, of an unusual kind...
e |[f dynamics in the viscous regime is dominated by a
unique mechanism, what is its nature?
® \What are the characteristic (growing?) length scales?

e |f the collective glass-forming behavior is assigned to an
underlying phase transition (critical point), where is it
located, what are its properties, what is the local order
parameter/
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Recent advances:
Are there growing characteristic
lengths associated with collective
behavior in glass-forming liquids?

[No relevant info from the dynamics or the structure
at a 2-body level]



Spatially heterogeneous dynamics

When approaching glass formation:
Presence of fast and slow moving regions over an increasing time scale

Computer simulation Experiment on colloids

=5

l-/.fl 'l 1 ] L L
120 .15 -10 -5 0 5 10 15 20

20 —15 10

Confocal microscopy of a colloidal suspension. Large
spheres: fast moving particles (0.5 diam. during T«).
[Weeks et al., 2000]

Particle displacements (during roughly 10 Tq)
[Hurley-Harrowell, 1995]

The info is embodied in multi-point space-time correlation functions
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Dynamic heterogeneity and multi-point

space-time correlations

Local probe for atom j, e.g.:  fi(k,t) = %{eik[ra‘ (t)—rj(O)i}

with k of the order of inverse of interatomic distance

® Average dynamics: self intemediate scattering function

1 N
— NZ < fi(k,t) >
=1

e Fluctuations in the dynamiCS° ofi(k,t) = fik,t)— < fi(k,t) >

Z 5(ri; —r) < [6fi(k, )][6f;(k,t)] >
From which: correlation length &4(t) and susceptibility Xa(t)

xa(t) = /dBTG4(7“ t) = — < Z5f] (k,1)]
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Spatial correlations in the dynamics and
associated length scale

Need multi-point space-time correlation/response functions
(Simulation, Imaging techniques, nonlinear dielectric spectroscopy, solid-state NMR)

Computer simulation of Lennard-Jones model Experimental results for the maximum
90 —— of X4 from a lower bound
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How about a growing static length scale ¢

Relation between the relaxation time and a static correlation length:

C
T(T) S Too exp[?fps (T)S] [Montanari-semerjian, 2006]

=> If super-Arrhenius dependence of T(T):
at some point, &ps(T) must grow when T{.
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How about a growing static length scale ?

General idea: Try to measure the length associated with the
bound on the relaxation time

C

7(T) S 7o exp[Eps(T)°

=> Point-to-set correlation function and associated
length, extracted e.g. from the influence of amorphous
boundary conditions.

tem

® Fvidence for some (

perature In com

imited) growth with decreasing

outer simulations.

® Hard to access experimentally. No progress thus far.
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Theoretical approach(es): in
search of an effective theory

of glass-forming liquids

What is the appropriate local order parameter?
A thermodynamic/structural or a purely kinetic
approach?



Different strategies for determining a
local order parameter

® Based on physical intuition on 3-D glass-forming liquids:

=> Structural view: a complex local arrangement in liquids that is
incompatible with crystallization (frustration).

=> Dynamical view: a mobility field with constraints (dynamical
facilitation).

® A more generic route:

Derive the proper mean-field theory and the order parameter (a /a
Landau) + include spatial fluctuations of this order parameter.

Then: Renormalization group & nucleation theory

[Compare with the well-known case of the gas-liquid transition]
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Some theoretical ingredients

® Frustration: The energy of a system cannot be minimized by
simultaneously minimizing all the local interactions.

=> Multiplicity of low-energy (“metastable”) states.
=> Thwarts crystallization.

® Thermal activation in a rugged (free) energy landscape:

Presence of an exponentially large number of metastable states that
may trap the system.

=> Relaxation slowdown is associated with thermally
activated escape from metastable states.

¢ Dynamical facilitation: Mobility triggers mobility in nearby regions.
=> Spatial correlations in the dynamics.

Different ways to incorporate the ingredients in a general
theory!
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Putative local order parameter(s)

® Local structural order: Observables characterizing the locally
preferred molecular arrangement in the liquid, if present (e.g., related
to bond-orientational order).

=> Such a local order (e.g., poly-tetrahedral in metallic glasses)
can be detected by multi-point, not simply pair, static correlation
functions.

e Similarity or “overlap” between configurations: Measures of the
similarity between two equilibrium configurations of the liquid.

High overlap => in the same state (“'localized”)
Low overlap => in different states (" delocalized”)

® Local mobility field: Mobility or activity defined by following the
dynamics in small volumes of space over short periods of time.

=> Easier at low T where mobility is localized and scarce.
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Theories based on an underlying
dynamic transition

® Mode-coupling theory [Gotze & coll (80’s to now)]

Self-consistent kinetic freezing: relaxation channel for density
fluctuations via product of density modes.

=> an avoided transition at Tc > T,

¢ Dynamical facilitation and kinetic constraints
|[Fredrickson-Andersen (80°’s)... Garrahan-Chandler]

100/~
Sparse mobility defects in an essentially '

frozen background;
mobility triggers mobility.

= o A =
X 50 _' - -‘:_.. "::-'l'--i e

=> an unreachable critical point at T=0
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Theories based on an underlying
thermodynamic transition

¢ Frustration-based approach [Nelson, Sadoc et al (80°s), Kivelson

+ GT, Tanaka et al]
Frustration = incompatibility between extension of the local
order preferred in a liquid and tiling of the whole space

=> competition
=> an avoided transition at T* > T,

No icosahedral xtal

® Random first-order transition theory: [Wolynes & coll (80s to
now), Parisi & coll + Many...]
Dynamic slowdown driven by the decrease of the configurational
entropy

=> an unreachable transition at Tk < Tg
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The free-energy landscape/RFOT scenario
as the mean-field theory
of glass-forming liquids

Analog of the van der Waals theory for the gas-liquid transition

[Wolynes, Kirkpatrick, Thirumalai, 80’s + Parisi-Mezard-Franz-Zamponi + many]

e An intricate mean-field theory (exact for the Flo(r)]
D->c0 hard-sphere fluid) with two critical

temperatures. | ﬂ

| |
| 1
e An exponentially large number of metastable f f (b ’JM |

states that may trap the liquid (configurational I
entropy) between a dynamical transition at Tq b U J J\) | J
and a “random first-order transition” (RFOT) cut inp(r) space

at a lower temperature Tk.
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Summary of the characteristic (theoretical )
temperatures

Unreachable (extrapolated): P
To=Tk (RFOT), 2 l /
T = 0 (facilitation). 107
8 L
Avoided (crossover): g ol H
T* (frustration), = | . f
Tc=Tq (MCT & RFOT). g \ S
2 ;
Experimental: T, Ty 0 " '\ roT
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Weak constraints from comparison to
experimental data...

With the help of (unavoidable ?) adjustable parameters,
several theories fit the same data equally well

12

; ':"' ?i.lgca' lt ! a -: A\ 3 i
L |-—-- 1-Propano AI.? . I*
o, O
o o
-6+
-9 '- Pl b 1 | 1 | 1 1
7 U8 49 1 - -
o aat . T,_/'T ¥ i Teg/T :
RFOT (Wolynes et al.) Facilitation (Garrahan-Chandler)  Frustration (Kivelson-GT)

log(viscosity or time) vs Tg/T

30



Conclusion

® No consensus on theory of glass transition. Still a
challenging problem!

® Existence and nature of growing length scales = key issue
for understanding the glass transition.

® New developments in theories of the glass transition that
may allow more stringent internal consistency checks and
more rigorous treatments... but weak constraints from
experiments.
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Empirical correlations



Correlations among characteristics of
the slow dynamics
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+ Correlation fragility & nonlinear relaxation
+ Universality of alpha relaxation

+ Density/temperature scaling

+ etc...
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Correlations between slow dynamics and
thermodynamics
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Correlation between heat capacity
jump at Tg and fragility for
molecular liquids
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+ Correlation between dynamic and thermodynamic
fragilities (Ito et al.,1999)

+ Correlation between VTF To and Kauzmann Tk

+ etc...
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Correlations between slow dynamics and
fast dynamics (in liquid or glass)

Example:

Large intensity of boson peak small fragility
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Correlations between slow dynamics and fast
dynamics (in liquid or glass)

Correlations between fragility and: Poisson ratio of elastic moduli, relative
amplitude of Boson peak, mean-square displacement, ergodicity parameter
at Ty, etc...
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Caution!!!

e Correlation does not mean causality

® [ arge body of data and systems are required to ascertain
correlation

® [ arge error bars

e Correlations may not be robust when studying effect of
additional control parameters (pressure, molecular weight,...)
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