

A transparent tellurite ceramic for near infrared applications

Morgane DOLHEN

E-mail: morgane.dolhen@unilim.fr

A. Bertrand, J. Carreaud, S. Chenu, M. Allix, J. Cornette, M. Colas, E. Véron, V. Couderc, T. Hayakawa, F. Célarié, C. Genevois, P. Thomas, J.-R. Duclère, G. Delaizir

Science des Procédés Céramiques et de Traitements de Surface

ÉCOLE NATIONALE SUPÉRIEURE DE CÉRAMIQUE INDUSTRIELLE

Transparent ceramics

MgAl₂O₄ Transparent armor [2]

ALON Infrared windows optical lenses [1]

OPTICAL

PROPERTIES

Mechanical

Dielectric

Thermal

Transparent ceramics

Dielectric

Thermal

ALON Infrared windows optical lenses [1]

MgAl₂O₄ Transparent armor [2]

OPTICAL

Light scattering sources [4]:

- 1: Grain boundary
- 2: residual pores
- 3: secondary phase(s)
- 4: double refraction
- 5: inclusions
- 6: surface roughness

[1] http://www.surmet.com/technology/alon-optical-ceramics/

[2] A. Goldstein, et al., Journal of the European Ceramic Society 2012, 32, 2869-2886.

[3] W. Liu, et al., Ceramics International 2012, 38, 259-264

[4] L. B. Kong, et al., Transparent Ceramics. Editor, Springer International Publishing, 2015.

Sapphire crystals Conventional single-crystal growth by Czochralski [5]

TRANSPARENT

[5] H. Li, et al., *Optical Materials* 2013, *35*, 1071-1076
[6] R. Boulesteix, et al., *Materials Letters* 2010, *64*, 1854-1857
[7] K. Morita, et al., *Journal of the European Ceramic Society* 2016, *36*, 2961-2968
[8] R. Boulesteix, et al., *Scripta Materialia* 2014, *75*, 54-57
[9] J. Akiyama, et al., in *Book First demonstration of rare-earth-doped anisotropic ceramic laser*, ed. by Editor, City, 2011, Chap., pp. 1-1.

Sapphire crystals Conventional single-crystal growth by Czochralski [5]

TRANSPARENT

[5] H. Li, et al., Optical Materials 2013, 35, 1071-1076

- [6] R. Boulesteix, et al., Materials Letters 2010, 64, 1854-1857
- [7] K. Morita, et al., Journal of the European Ceramic Society 2016, 36, 2961-2968
- [8] R. Boulesteix, et al., Scripta Materialia 2014, 75, 54-57

[9] J. Akiyama, et al., in Book First demonstration of rare-earth-doped anisotropic ceramic laser, ed. by Editor, City, 2011, Chap., pp. 1-1.

Sapphire crystals Conventional single-crystal growth by Czochralski [5]

Nd:YAG Vacuum reactionsintering [6]

TRANSPARENT

Nd:Lu₂O₃ Slip-casting coupled with Spark Plasma Sintering (SPS) [8]

[5] H. Li, et al., Optical Materials 2013, 35, 1071-1076

- [6] R. Boulesteix, et al., Materials Letters 2010, 64, 1854-1857
- [7] K. Morita, et al., Journal of the European Ceramic Society 2016, 36, 2961-2968
- [8] R. Boulesteix, et al., Scripta Materialia 2014, 75, 54-57

[9] J. Akiyama, et al., in Book First demonstration of rare-earth-doped anisotropic ceramic laser, ed. by Editor, City, 2011, Chap., pp. 1-1.

MgAl₂O₄ Spark Plasma Sintering [7]

Sapphire crystals Conventional single-crystal growth by Czochralski [5]

or Molecular Scien e for Molecular Sci ute for Molecular stitute for Molecula nstitute for Molecu **Anisotropic Nd:FAP** (Fluorapatite) ceramic [9]

sintering [6]

Nd:YAG Vacuum reaction-

TRANSPARENT

Nd:Lu₂O₃ Slip-casting coupled with Spark Plasma Sintering (SPS) [8]

[5] H. Li, et al., Optical Materials 2013, 35, 1071-1076

- [6] R. Boulesteix, et al., Materials Letters 2010, 64, 1854-1857
- [7] K. Morita, et al., Journal of the European Ceramic Society 2016, 36, 2961-2968
- [8] R. Boulesteix, et al., Scripta Materialia 2014, 75, 54-57

[9] J. Akiyama, et al., in Book First demonstration of rare-earth-doped anisotropic ceramic laser, ed. by Editor, City, 2011, Chap., pp. 1-1.

NIMS NIMS NIM	IS NIMS NIMS	NIMS N	MS NIMS	NIMS I IIMS	NIMS NIMS N
NIMS NIMS NIM	S NINS NIMS	NIMS N.	NS NIMS	NIMS I IMS	NIMS NIMS N
NIMS NIMS NIM	S NINS NIMS	NIMS N	NS NIMS	NIMS I	NIMS NIMS N
NIMS NIMS NIM	S NINS NIMS	NIMS N	NS NIMS	NIMS I IMS	NIMS NIMS N
NIMS NIMS NIM	S NINS NIMS	NIMS N	MS NIMS	NIMS I IMS	NIMS NIMS N
NIMS NIMS NIM	S NINS NIMS	NIMS N	MS NIMS	NIMS I IMS	NIMS NIMS N
AITAC AITAC BITA	C AITAIC AITAIC	NITLIC MA	- T T	THE OWNER	

MgAl₂O₄ Spark Plasma Sintering [7]

[5] H. Li, et al., Optical Materials 2013, 35, 1071-1076

- [6] R. Boulesteix, et al., Materials Letters 2010, 64, 1854-1857
- [7] K. Morita, et al., Journal of the European Ceramic Society 2016, 36, 2961-2968
- [8] R. Boulesteix, et al., Scripta Materialia 2014, 75, 54-57

[9] J. Akiyama, et al., in Book First demonstration of rare-earth-doped anisotropic ceramic laser, ed. by Editor, City, 2011, Chap., pp. 1-1.

Full crystallization from glass technique

Full crystallization from glass technique

Full crystallization from glass technique

1st Transparent tellurite ceramic

75 TeO₂ - 12.5 Nb₂O₅ - 12.5 Bi₂O₃

[13] A. Bertrand, et al., Advanced Optical Materials 2016, 4, 1482-1486

1st Transparent tellurite ceramic

75 TeO₂ - 12.5 Nb₂O₅ - 12.5 Bi₂O₃

[13] A. Bertrand, et al., Advanced Optical Materials 2016, 4, 1482-1486

Outline

- Characteristic of the TNB glass
 - Glass composition
 - DSC curves

Study of the crystallization by X-ray diffraction

- Characteristic of the TNB ceramic
 - Optical properties
 - Microstructure and thermo-mechanical properties

Glass composition

Tellurite glasses vs silica glasses [14]

- Higher transparency
- Lower melting point (800 -900°C)
- High refractive index
- Good non linear optical properties

Glass composition

Congruent crystallization with a cubic symmetry

[14] R. A. El-Mallawany, in Book Tellurite Glasses Handbook: Physical Properties and Data, ed. by Editor, CRC press, City, 2011, Chapter

Characteristic of the TNB glass

In-situ X-ray diffraction

In-situ X-ray diffraction

480°C: Transformation into another polymorph of $Bi_{0,8}Nb_{0,8}Te_{2,4}O_8$ (isostructural to $SnTe_3O_8$)

400°C: Cubic phase Bi_{0,8}Nb_{0,8}Te_{2,4}O₈ (anti-glass β-Bi₂Te₄O₁₁)

T < 400°C: Glass

T > 520°C: Secondary phases (BiNbTe₂O₈)

480°C: Transformation into another polymorph of Bi_{0.8}Nb_{0.8}Te_{2.4}O₈ (isostructural to SnTe₃O₈)

400°C: Cubic phase Bi_{0,8}Nb_{0,8}Te_{2,4}O₈ (anti-glass β -Bi₂Te₄O₁₁)

T < 400°C: Glass

Temperature range 400°C < T < 520°C

[17] O. Durand, "Propriétés structurales et vibrationnelles des phases désordonnées dans le système TeO2-Bi2O3", Université de Limoges, 2006.

Optical characterization

Refractive index Slight difference between glass, antiglass and ceramic

Optical characterization

Refractive index difference Slight between glass, antiglass and ceramic

T < 510°C: light scattering (residual glass and/or antiglass with a different n) T > 510°C: translucent and opaque ceramics (cubic phase decomposition and cracks at grain boundaries) 510°C – 1h30

% Transmittance

Transparent ceramic

Transparent in the MIR (3 - 5 μm)

Properties of the ceramic

EDS analysis Congruent crystallization

Sample	Nb	Te	Bi
Glass	21.0(3)	58.6(3)	20.4(3)
Ceramic (510 °C, 1 h 30 min)	20.9(3)	58.7(2)	20.4(2)

Properties of the ceramic

EDS analysis Congruent crystallization

Sample	Nb	Te	Bi
Glass	21.0(3)	58.6(3)	20.4(3)
Ceramic (510 °C, 1 h 30 min)	20.9(3)	58.7(2)	20.4(2)

(F. Brisset, ICMMO)

SEM image (Y. Launay, SPCTS) Absence of porosity No residual anti-glass phase Thin grain boundaries

Properties of the ceramic

EDS analysis Congruent crystallization

Sample	NЬ	Te	Bi
Glass	21.0(3)	58.6(3)	20.4(3)
Ceramic (510 °C, 1 h 30 min)	20.9(3)	58.7 (2)	20.4(2)

Conclusion

Thank you

for

your attention

A. Bertrand, et al., *Advanced Optical Materials* **2016**, *4*, 1482-1486

E-mail: morgane.dolhen@unilim.fr

nstitut de recherche

Raman spectra of amorphous and crystallized phase

Raman spectra of glass, anti-glass and ceramic

Transmission Electron Microscopy

TEM image of a ceramic (thermally treated at 510°C – 1h30)

Laser Emission ?

J. Carreaud, A. Labruyère, H. Dardar, F. Moisy, J. R. Duclère, V. Couderc, A. Bertrand, M. Dutreilh-Colas, G. Delaizir, T. Hayakawa, A. Crunteanu, P. Thomas, *Optical Materials* **2015**, *47*, 99-107

