

Vaporisation ElectroThermale (ETV) – ICP/MS ou ICP/AES : une nouvelle méthode de spéciation directe des métaux et métalloïdes dans les matrices solides

Jérôme FRAYRET

Université de Pau et des Pays de l'Adour/CNRS, IPREM UMR 5254, LCABIE, 2 avenue Pierre Angot 64053 PAU Cedex 09, France

Des limites de la caractérisation élémentaire dans les matériaux aux contacts alimentaires : Une contrainte scientifique et industrielle (REACH)

25-26 novembre 2013

Pourquoi l'analyse directe de solides par ETV ?

Aucune minéralisation nécessaire :

- gain de temps significatif
- pas de réactifs (contamination)
- manipulation aisée et moins dangereuse (utilisation d'acides concentrés)
- pas de perte d'élément volatil durant la décomposition
- pas de facteur de dilution : gain en sensibilité
- bonnes limites de détection par introduction directe et complète de l'échantillon
- temps d'analyse très court (<2 minutes)

Faible quantité d'échantillon nécessaire (<1 mg)

- Etape de préparation de l'échantillon importante
- homogénéité parfaite de l'échantillon
- nécessité d'une pesée de précision (de l'ordre du µg)

couplage à une torche ICP

Connexion directe avec tuyau flexible PTFE ou tube céramique rigide

Procédure: - Peser l'échantillon solide dans une nacelle en graphite

- vaporiser dans le tube en graphite
- conversion en aérosol sec
- transport sans perte au plasma ICP
- excitation et intégration des signaux transitoires

ETV - Formation de l'aérosol

Efficacité de transport optimale (80-100%)

Limites de détection en ETV ICP-OES

				Déterminé par ETV ICP-OES					Limites de détection en ng/g (ppb)								
н	н			Déterminé par ETV ICP-OES, Autres paramètres nécessaires						(calculées comme 3 fois l'écart-type du blanc, 100 mg d'échantillon)					Не		
Li 5	Be 1			Non encore déterminé						В 30	С	Ν	0	F	Ne		
Na 10	Mg 0.1		AlSiPSAlI'instrumentation actuelle10502030Al							Ar							
К 10	Ca 1	Sc 1	Ti 2	V 2	Cr 5	Mn 1	Fe 2	Co 2	Ni 5	Cu 2	Zn 1	Ga 5	Ge 50	As 20	Se 20	Br	Kr
Rb	Sr 1	Y 1	Zr 1	Nb 5	Мо 10	Тс	Ru 20	Rh 5	Pd	Ag 10	Cd 5	In 30	Sn 10	Sb 50	Те 20	Т	Xe
Cs	Ba 1	La 1	Hf 1	Та 10	W 10	Re 5	Os	Ir	Pt	Au 50	Hg 100	TI 30	Pb 10	Bi 5	Ро	At	Rn
Fr	Ra	Ac	Rf	Db						_							
			Ce 5	Pr 10	Nd 5	Pm	Sm 5	Eu 5	Gd 5	Tb	Dy 5	Но	Er	Tm	Yb	Lu	
			Th 5	Pa	U 10	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Dispositif expérimental

ETV Spectral Systems 4000-c

ICP/AES Jobin Yvon Activa-M Puissance plasma : 1200W

Programme de température

Programme de température classique pour une analyse en total en ETV

Programme de température modifié pour une analyse de spéciation en ETV

Influence du gaz de réaction

- Analyse de sels purs de HgCl₂ et HgO
- Vaporisation des poudres en présence ou absence de gaz de réaction (GR) CF₂Cl₂

Effet mémoire

Pas d'effet mémoire après une analyse « classique »

Problème de contamination dans les cas suivants:

- saturation du signal
- dépôts de graphite contaminé sur les parois du tube en PTFE
- nacelle poreuse

Spéciation du Mercure par ETV-ICP/AES

- Mélanges de sels de Mercure : Hg (II) :
 - $HgCl_2$

- HgO

- HgS

Reproductibilité des mesures effectuées par ETV-ICP/AES et ETV-ICP/MS

Résolution des interférences

Les carbonates interfèrent sur le mercure aux raies d'émission à 253,95 et 194,16nm

Les carbonates n'interfèrent plus dans la mesure du signal du mercure

Spéciation du Mercure par ETV-ICP/MS

- Spéciation des différents composés du mercure respectée
 - Sensibilité accrue (facteur 50-100)

Spéciation du zinc par ETV-ICP/MS

Pas d'effet mémoire sur le signal du zinc

Spéciation du zinc dans le lait

Spéciation de l'argent dans des verres de lunettes

Application à l'analyse de cristaux de haute pureté

<u>**Cible :**</u> Cristaux de quartz de haute pureté utilisés comme résonateurs piézoélectriques pour la génération de fréquences fixes

Problématique : impuretés contenues dans ces cristaux : modification des propriétés du cristal entrainant des dérives des fréquences délivrées

Analyse de ces impuretés par ICP/MS après une étape de : mise en solution par une attaque acide

Procédure analytique sans ETV

Préparation de l'échantillon

Nettoyage de la surface (environ 60 minutes)

Analyse des impuretés

Échantillon homogène

Mise en solution : (solution à base d'acide fluorhydrique)

 Neutralisation à l'acide Borique H₃BO₃ HF + H₃BO₃ → BF₃ + 3 H₂O
Utilisation d'un kit inerte pour l'introduction de l'échantillon

Analyse par ICP/MS avec cellule de collision H_2

Échantillon hétérogène

Ablation de la surface par laser femtoseconde

Analyse par ICP/MS

Utilisation d'un matériau certifié de référence SRM-6xx

Ce matériau va subir exactement les mêmes étapes de préparation et d'analyse que les échantillons à analyser. La procédure analytique sera validée par rapport aux valeurs de référence du matériau certifié

Limites en ICP/MS

	LD solution (µg/l)	LD cristaux (µg/g)
Lithium / 7	0,003	0,0015
Sodium / 23	0,75	0,31
Magnésium / 24	0,017	0,007
Aluminium / 27	0,11	0,047
Potassium / 39	1,4	0,35
Calcium / 42	0,40	0,16
Fer / 56	0,086	0,035

système inerte d'introduction de l'échantillon utilisé que pour les analyses de quartz

Analyse du sodium par ETV-ICP/AES

Analyse du sodium par ETV-ICP/AES

Analyse de l'aluminium par ETV-ICP/AES

Analyse du fer par ETV-ICP/AES

Quantification

CKO1	ETV-ICP/AES	minéralisation-ICP/MS
[Na] (µg/g)	0,12	<0,3
[Mg] (µg/g)	0,093	non mesuré
[K] (µg/g)	0	2,2
[Fe] (µg/g)	0,073	<0,035
[Ca] (µg/g)	0,082	<0,2
[Al] (µg/g)	0,32	0,3

FO2	ETV-ICP/AES	minéralisation-ICP/MS
[Na] (µg/g)	0,11	<0,3
[Mg] (µg/g)	0,13	non mesuré
[K] (µg/g)	0	1,4
[Fe] (µg/g)	0,044	<0,035
[Ca] (µg/g)	0,19	<0,2
[Al] (µg/g)	0,29	0,1

- Vaporisation totale de l'échantillon dans les cas étudiés
- Pas d'effet mémoire constaté
- Effet de matrice faible en utilisation normale
- Interférences analytiques solvables par permutation (ICP/AES ICP/MS)
- Analyse de spéciation possible par ETV (Hg, Zn, Ag, Na, Al, Fe, ...)
- Tests sur d'autres éléments (Cr, As, ...)

Merci pour votre attention

Schematic of concentric nebulizer

