Various ideas and technical foundations for achieving carbon neutral glass melting

Terutaka Maehara

AGC Inc., Innovative Technology Laboratories, Japan

Outline

- 1. Introduction
- CO₂ reduction from melting energy
 Electrification is the top priority
 → Hybrid furnace or Full-electric furnace?
 - CO₂ emission factor of electricity
 - \rightarrow Regional strategies
 - If need green combustion source
 - → Ammonia just for Japan?

- CO₂ reduction from raw materials
 Cullet recycling is the top priority
 Quick lime, dolime and then NaOH?
- 4. CO₂ capture from glass melting furnace
 Utilization, Storage
 or closed cycle in the factory?
- 5. Ideas stand on fundamental studiesBriquette preheat × Cold top melting →?

AGC's history

ICG Spring School, April 29 – May 3 2024, Lloret del Mar ©AGC Inc.

Your Dreams, Our Challenge

AGC's position

Float flat glass Top share worldwide

> Automotive glass Top share worldwide

For TFT LCD/OLED Glass substrates No. 2 Worldwide

Caustic soda PVC No. 1 in Southeast Asia

(Mountain of salt used as a raw material)

Fluoropolymer resin ETFE **No. 1** Worldwide

Cover glass for carmounted displays **No. 1** Worldwide

Ultra-thin sheet for electronic equipment Soda lime glass **No. 1** Worldwide

Fluoropolymer resin for on-site coatings **NO. 1** Worldwide

*Based on AGC estimates.

Addressing Climate Change

Net zero carbon goal in 2050

In 2021, we formulated medium- to long-term GHG reduction targets.
 Applied for SBT certification by SBTi*, an international climate change initiative

Global efforts to address climate change

AGC's Technology roadmap for glass furnaces

2019			2030		2050	
ope & Americas	I	Fuel	Installation of electric booster *	Introduction an deployment of	nd hybrid furnaces	
Asia Eur	Large furnaces (Architectural and Automotive glass)	from Heavy oil to Natural gas Oxygen Combustion	Start of demonstration te and deployment of clean Introduction and deploy of Energy-saving techno	ests, introduction, fuel** ment logies	Utilization of carbon recycling, cullet recycling technology, etc.	Optimal combination of Electrification, clean fuel, carbon recycling, cullet recycling technologies
	Small & Mid- size furnaces (Display business etc.)	Installation of electric booster * Start of demonstration tests, introduction, and deployment of electric melting furnace				
			*Eporai	zod auviliary boatir	**^mmo	nia Hydrogon oto

Energized auxiliary heating

**Ammonia, Hydrogen etc.

Outline

- 1. Introduction
- CO₂ reduction from melting energy
 Electrification is the top priority
 - → Hybrid furnace or Full-electric furnace?
 - CO₂ emission factor of electricity
 - \rightarrow Regional strategies
 - If need green combustion source
 - → Ammonia just for Japan?

- CO₂ reduction from raw materials
 Cullet recycling is the top priority
 Quick lime, dolime and then NaOH?
- 4. CO₂ capture from glass melting furnace
 Utilization, Storage
 or closed cycle in the factory?
- 5. Ideas stand on fundamental studiesBriquette preheat × Cold top melting →?

CO₂ emission from float glass melting

0.50 $t_{co2}/t_{glass} = 0.34$ from combustion + 0.16 from carbonates

A=6.8GJ/t (0.051 t of CO_2 emission from 1GJ of NG combustion)

- A) Heat from Gas combustion
- B) Melting energy and sensible heat increase melt
- C) Entire wall heat loss
- D) Sensible heat waste flue gas
- E) Sensible heat into regenerator
- F) Sensible heat preheated air

Direct Electric Heating is more efficient than combustion ¹¹

Direct Electric Heating

"Electric melting and boosting for glass quality improvement" GLASS WORLDWIDE http://www.electroglass.co.uk/articles/2010-09%20Electric%20Melting%20&%20Boosting%20for%20Glass%20Quality%20Improvement.pdf

Measures to reduce CO₂ emission from glass melting

		Efficient combustion: Oxy-fuel	
CO ₂ emission	Energy saving	Waste heat recovery: WHB, ORC, BCP	
from the combustion		Heat loss reduction: strengthening insulation	
of fossil fuels	Energy transformation	Electric heating (Joule heating)	
		Hydrogen, Ammonia, Biogas	
CO_2 emission	RMs transformation	Carbon free Na, Mg, Ca sources	
materials		Increasing recycled cullet	
	<u>r</u> cus	Utilize the CO_2 or its derivatives	
	.005	Store the captured CO ₂ underground	

AGC and Saint-Gobain Partner for the Decarbonization of Flat Glass Manufacturing

Tokyo, February 6, 2023 - AGC and Saint-Gobain, worldwide flat glass manufacturers leading in sustainability, announce that they are collaborating on the design of a **pilot breakthrough flat glass line** that is expected to reduce very significantly its direct CO₂ emissions.

As part of this R&D project, AGC's patterned glass production line in Barevka, Czech Republic, will be entirely refurbished into a high performing & state-of-the-art line that targets to be 50% electrified and 50% fired by a combination of oxygen and gas. This is a technical breakthrough compared to current technology used in flat glass furnaces fired by natural gas. It will be **the most sustainable flat glass line design** contributing to both companies' paths towards carbon neutrality and to the necessary acceleration of the flat glass industry decarbonization.

Measures to reduce CO₂ emission from glass melting

		Efficient combustion: Oxy-fuel
CO ₂ emission	Energy saving	Waste heat recovery: WHB, ORC, BCP
from the combustion		Heat loss reduction: strengthening insulation
of fossil fuels	Energy transformation	Electric heating (Joule heating)
		Hydrogen, Ammonia, Biogas
CO_2 emission	RMs transformation	Carbon free Na, Mg, Ca sources
materials		Increasing recycled cullet
	<u>r</u> cus	Utilize the CO_2 or its derivatives
	.003	Store the captured CO_2 underground

Ammonia Combustion Technology Development Project including AGC Selected as NEDO-Commissioned Project

-Aiming to achieve net zero carbon by 2050 with innovative glass melting technology-

Tokyo, January 13, 2022—AGC Inc.(AGC), a world-leading manufacturer of glass, chemicals and high-tech materials, has been selected by the New Energy and Industrial Technology Development Organization (NEDO) as a contractor for the project: "Development of Fuel Ammonia Combustion Technology for Industrial Furnaces". AGC will develop this project jointly with Taiyo Nippon Sanso Corporation, National Institute of Advanced Industrial Science and Technology (AIST), and Tohoku University from the end of December 2021 to March 2026.

 New Energy and Industrial Technology Development Organization

Ammonia Combustion Technology Development Project including AGC Selected as NEDO-Commissioned Project

-Aiming to achieve net zero carbon by 2050 with innovative glass melting technology-

Ammonia Combustion Technology Development Project including AGC Selected as NEDO-Commissioned Project

-Aiming to achieve net zero carbon by 2050 with innovative glass melting technology-

Natural gas 100%

Ammonia 100% (Ammonia flames are hard to see because of low brightness)

Storage tank for ammonia fuel

17

Ammonia combustion just for Japan?

AGC Your Dreams, Our Challenge

		Efficient combustion: Oxy-fuel	
CO ₂ emission	Energy saving	Waste heat recovery: WHB, ORC, BCP	
from the combustion		Heat loss reduction: strengthening insulation	
of fossil fuels	Energy transformation	Electric heating (Joule heating)	
		Hydrogen, Ammonia, Biogas	
CO_2 emission	RMs transformation	Carbon free Na, Mg, Ca sources	
materials		Increasing recycled cullet	
C		Utilize the CO ₂ or its derivatives	
	.03	Store the captured CO ₂ underground	

Outline

- 1. Introduction
- CO₂ reduction from melting energy
 Electrification is the top priority
 → Hybrid furnace or Full-electric furnace?
 - CO₂ emission factor of electricity
 - \rightarrow Regional strategies
 - If need green combustion source
 - → Ammonia just for Japan?

- CO₂ reduction from raw materials
 Cullet recycling is the top priority
 Quick lime, dolime and then NaOH?
- 4. CO₂ capture from glass melting furnace
 Utilization, Storage
 or closed cycle in the factory?
- 5. Ideas stand on fundamental studiesBriquette preheat × Cold top melting →?

CO₂ emission from float glass melting

0.50 $t_{co2}/t_{glass} = 0.34$ from combustion + **0.16** from carbonates

	Amount (t)	CO ₂ emission (t)
Sand	0.535	0
Feldspar	0.020	0
Soda ash	0.165	0.070
Dolomite	0.140	0.065
Limestone	0.050	0.025
Salt cake	0.010	0
Cullet	0.250	0

(75%Batch/25%Cullet)

Burned dolomite, Burned lime

0.50 $t_{co2}/t_{glass} = 0.34$ from combustion + 0.16 from carbonates

0.07 from soda ash

ccus		CO ₂ emission (t)	Amount (t)	
		0	0.535	Sand
		0	0.020	Feldspar
CO ₂		0.070	0.165	Soda ash
+	Burned dolomite	0	0.140	Dolomite
CaO CaO	Burned lime	0	0.050	Limestone
	can replace carbonates	0	0.010	Salt cake
CaCO ₃		0	0.250	Cullet

Na₂O in float glass composition, alternatives?

Salt NaCl Soda ash Na₂CO₃ Caustic soda NaOH

Difficulty handing of NaOH

AGC Your Dreams, Our Challenge

Old patents for using NaOH in glass melting

How to obtain a batch mixture that can be handled on an industrial line using NaOH aqueous solution, which is a common distribution form?

- JP-A-Sho49-31717 (1974, AGC) describes a method for vaporizing water from NaOH aqueous solution by mixing with preheated cullet.
- US4211568A (1978, PPG) describes a method for obtaining 'dry' glass batch mixtures by properly choosing the concentration of NaOH aqueous solution.

Since NaOH has a high vapor pressure, and its vapor is highly corrosive to bricks, batch containing NaOH would not suit for combustion furnace other than cold-top melting furnace.

Measures to reduce CO₂ emission from glass melting

	Energy saving	Efficient combustion: Oxy-fuel
CO_2 emission		Waste heat recovery: WHB, ORC, BCP
from the combustion of		Heat loss reduction: strengthening insulation
fossil fuels	Energy transformation	Electric heating (Joule heating)
		Hydrogen, Ammonia, Biogas
CO_2 emission	RMs	Carbon free Na, Mg, Ca sources
materials	transformation	Increasing recycled cullet
	<u>r</u> cus	Utilize the CO_2 or its derivatives
	.003	Store the captured CO ₂ underground

Outline

- 1. Introduction
- CO₂ reduction from melting energy
 Electrification is the top priority
 → Hybrid furnace or Full-electric furnace?
 - CO₂ emission factor of electricity
 - \rightarrow Regional strategies
 - If need green combustion source
 - → Ammonia just for Japan?

- CO₂ reduction from raw materials
 Cullet recycling is the top priority
 Quick lime, dolime and then NaOH?
- 4. CO₂ capture from glass melting furnace
 Utilization, Storage
 or closed cycle in the factory?
- 5. Ideas stand on fundamental studiesBriquette preheat × Cold top melting →?

Measures to reduce CO₂ emission from glass melting

	Energy saving	Efficient combustion: Oxy-fuel
CO_2 emission		Waste heat recovery: WHB, ORC, BCP
from the combustion of		Heat loss reduction: strengthening insulation
fossil fuels	Energy transformation	Electric heating (Joule heating)
		Hydrogen, Ammonia, Biogas
CO_2 emission	RMs transformation	Carbon free Na, Mg, Ca sources
materials		Increasing recycled cullet
		Utilize the CO_2 or its derivatives
	.05	Store the captured CO ₂ underground

or Closed CO₂ cycle in the factory

- Reaction with NaOH
- Reaction with H₂

Outline

- 1. Introduction
- CO₂ reduction from melting energy
 Electrification is the top priority
 → Hybrid furnace or Full-electric furnace?
 - CO₂ emission factor of electricity
 - \rightarrow Regional strategies
 - If need green combustion source
 - → Ammonia just for Japan?

- CO₂ reduction from raw materials
 Cullet recycling is the top priority
 Quick lime, dolime and then NaOH?
- 4. CO₂ capture from glass melting furnace
 Utilization, Storage
 or closed cycle in the factory?
- 5. Ideas stand on fundamental studiesBriquette preheat × Cold top melting →?

Energy demand for batch to melt conversion

- 60-75% of the energy required to obtain 1500°C glass melt is used for ramping the temperature of the glass batch before melting.
- Thermal conductivity of the glass batch before melting (<1000°C) is as low as that of insulation bricks.

Glass batch briquet

www.koeppern-international.com

www.sahutconreur.com

- A briquette is a compressed block of materials formed by twin roller presses.
- Less moisture and binders are required than granulation process.
- No need for the drying process before feeding into the furnace.

Specific pull rate cold-top melting of soda-lime glass

ICG Spring School, April 29 – May 3 2024, Lloret del Mar ©AGC Inc.

Your Dreams, Our Challenge

Pull rate is controlled by nozzle diameter choice and nozzle temperature

Pros & Cons of Cold-top melting

©Relatively lower fining load thanks to less evaporation of fining agent.

©Low melting capacity per unit area due to lack of topside heating

©Furnace design that suits the electrical resistance of each glass composition is required.

ICG Spring School, April 29 – May 3 2024, Lloret del Mar ©AGC Inc.

Your Dreams, Our Challenge

Alternative electrical heating ideas

 Patents describing immersed heating element made of solid metal or tubular metal in molten glass were exist.

Owens-Corning (1975)

NSG (1987)

Radiant heaters for atmospheric heating protected by a metal jacket are commercially available.
 Image: Commercial strain of the st

ICG Spring School, April 29 – May 3 2024, Lloret del Mar ©AGC Inc.

Your Dreams, Our Challenge

A new heat source for glass melting

Immersed Radiant Heater

Ideal glass melting idea using IRH

- ••• heating batch
- ••• batch to melt conversion
 - •• heating molten glass

Heat on demand

Melting capacity $(t/d/m^2)$ and efficiency

• Soda lime glass: **7.5**t/d/m², $T_{maximum} = 1500^{\circ}C$

ICG Spring School, April 29 – May 3 2024, Lloret del Mar ©AGC Inc.

Your Dreams, Our Challenge

Availability for multi-product melting

- Soda lime glass: **7.5**t/d/m², $T_{maximum} = 1500^{\circ}C$
- High alumina glass: **5.0**t/d/m², T_{maximum}=1550℃

©The difference in electrical resistance between the glass currently being melted and the glass to be melted next need not to be cared.

☺The time required to change the glass composition is 1/30 shorter than in the case of typical combustion furnace.

Summary

- We created a unique heat source for glass melting named the 'Immersed Radiant Heater' and tested the various ideas.
- IRH can heat the molten glass irrespective of its electric resistivity and heat the glass batch directly inside as well.
- Melting capacity of the furnace equipped IRHs in 3 stages was 3 times higher than typical cold-top furnace.
- Ultimately minimized volume of molten glass in the furnace gave us the following remarks:
 - -97% of energy efficiency for batch to melt conversion.
 - -Only half day of the transition time for glass change.

Invention of technologies that give competitiveness to the small-scale production of specialty glasses. Innovative technology that makes the mass production process of commoditized glass carbon neutral.

Although these may seem to be at opposite ends of the spectrum, the scientific understanding required is common to both types of development.

Thank you for your attention.

Acknowledgment

CN topics AGC) M. Shirai, H. Imai and T. Kamihori Briquetting & IRH AGC) Y. Doi, A. Niwa, S. Hyodo, T. Enomoto, T. Yamazaki Apollo Furnaces) L. Keen and R. Pauli

