Verres de silice en milieux radiatifs

du durcissement pour le spatial à l'application en dosimétrie médicale

Franck MADY

Professeur

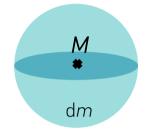
SILICA FIBERS AND USUAL DOPANTS

CORE DOPANT	Role
Ge	Increases refractive index (RI) for total internal reflection
Er	Stimulated emission (fiber amplifiers and lasers)
Yb	Stimulated emission (fiber amplifiers and lasers)
Р	Increases RI, lowers fusion point, improves solubilty of RE ions, reduces OH abs.
Al	Increases RI, improves solubilty of RE ions, stabilizes host matrix around dopants
Luminescent ions	RE ions (Yb, Ce, Gd), Cu, N for radioluminescence

CLADDING DOPANT	Role
F	Decreases RI for total internal reflection
В	Decreases RI

Dose D « absorbed » to a material

Energy deposited by particles in the medium per unit mass

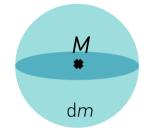

- In unit of GRAYS \rightarrow 1 Gy = 1 J kg⁻¹ (i.e. 1 m² s⁻² in fundamental units)
- Determined by the fluence of incident ionizing particles (cm⁻²)
- Former unit (still used in space community) = rad,
 acronym for «radiation absorbed dose» → 1 rad = 0.01 Gy

Harold GRAY 1905-1965 Radiobiologist

Elementary volume dV around M

$$D(M) = \frac{dE_{\rm abs}(M)}{dm}$$

Dose D « absorbed » to a material


Energy deposited by particles in the medium per unit mass

- In unit of GRAYS \rightarrow 1 Gy = 1 J kg⁻¹ (i.e. 1 m² s⁻² in fundamental units)
- Determined by the fluence of incident ionizing particles (cm⁻²)
- Former unit (still used in space community) = rad,
 acronym for «radiation absorbed dose» → 1 rad = 0.01 Gy

Orders of magnitude

- Therapeutic dose = **60** Gy but controls should measure < 1 Gy
- Cumulated dose over a 15-year satellite mission = **300-500 Gy**
- Dose létale corps entier DL50 = 4 Gy

Elementary volume dV around M

$$D(M) = \frac{dE_{abs}(M)}{dm}$$

DOSE AND DOSE RATE

Dose rate D' « absorbed » to a material :

The rate of dose absorption, which depends on the particle fluence rate (cm⁻² s⁻¹)

$$D'(M) = dD(M)/dt$$
 (Gy s⁻¹, Gy h⁻¹...)

Orders of magnitude

- Space = $10^{-6} < D' < 10^{-3}$ Gy h⁻¹
- Therapeutic irradiaiton ; from **a few cGy s**⁻¹ (conventional) to **a few thousands Gy s**⁻¹ (flash)

• OUTLINE

- 1. Radiation effects on silica glasses
- 2. Why should we mitigate? How can we exploit?
- 3. Space Applications (low dose rates)
 - 3A Silica-based fibers in space
 - 3B The space harsh environment
 - 3C Radiation hardening techniques (against RIA)
 - 3D How to take advantage of low dose rates in active fibers
- 4. Medical Applications in radiation-therapy (low doses)
 - 4A Radiation-therapy and dosimetry
 - 4B The promises of « flash » therapy and related needs
 - 4C Why silica-based fibers can help?
 - 4D Topical example: high-energy proton therapy (HEPT)

1 • RADIATION EFFECTS ON SILICA GLASSES

A (very) brief overview

1 - RADIATION EFFECTS ON SILICA GLASSES

lonizing radiation?

In physics: if the radiation energy exceeds the ionization energy

- o In wide-band gap materials: $E > E_G$ (mean energy for a pair $\sim 2.8 E_G$)
- o Gases, liquids: Mean ionization energy about 30 eV
- O ...

In radiobiology: a radiation capable of damaging DNA (photons are non-ionizing particles!)

1 - RADIATION EFFECTS ON SILICA GLASSES

lonizing radiation?

In physics: if the radiation energy exceeds the ionization energy

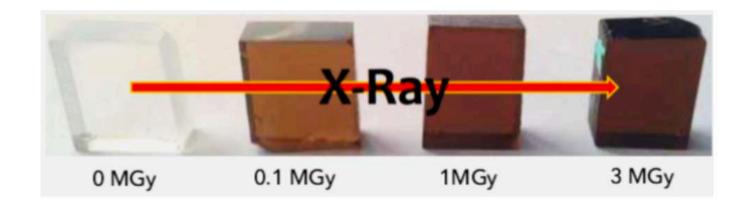
- o In wide-band gap materials: $E > E_G$ (mean energy for a pair $\sim 2.8 E_G$)
- o Gases, liquids: Mean ionization energy about 30 eV
- O ...

In radiobiology: a radiation capable of damaging DNA (photons are non-ionizing particles!)

Radiation types

Photons (X rays, gamma rays), light charged particles (electrons), heavy charged particles (protons, ions).

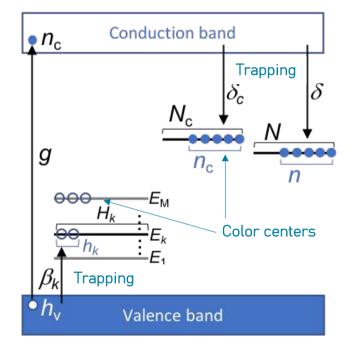
Neutrons are specific, out of the scope of this talk.


1 - RADIATION EFFECTS ON SILICA GLASSES

3 major effects

- 1A Radiation–Induced Attenuation or RIA: development of optical loss
- 1B Radiation-Induced Emission or RIE: Cerenkov + Radioluminescence (RL)
- 1C Radiation-Induced Refractive Index Change or RIRIC: compaction and RIA

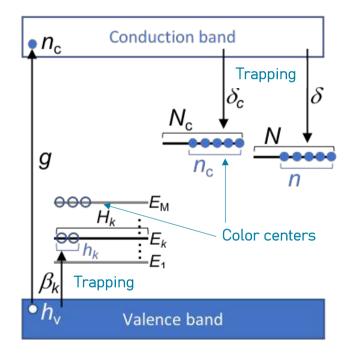
Induced optical absorption, « darkening », on a very broad spectral range



RIA level depends on the dose D but also, a priori, on the dose rate D'

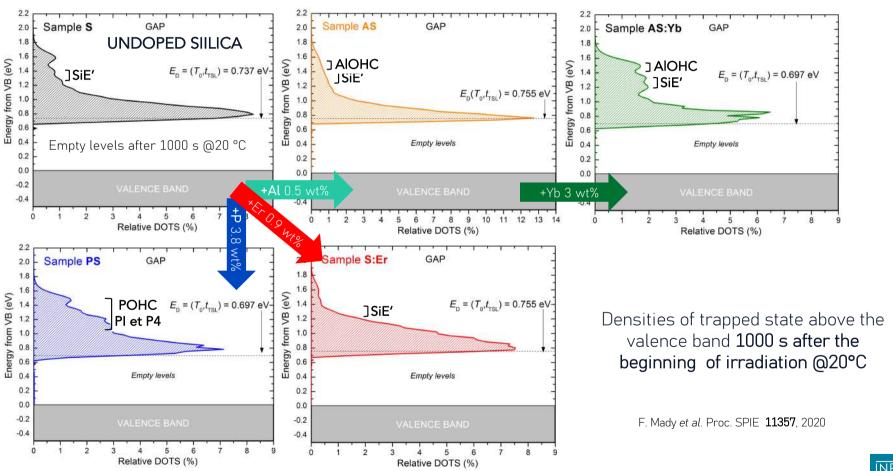
- Ionization → production on electron-hole pairs (« free » band carriers)
- Free electrons and holes can **trap** at
 - Intrinsic defect sites

```
for ex. oxygen deficient centers
as \equiv Si - Si \equiv + h^+ \rightarrow SiE' (i.e. \equiv Si \bullet)
or \equiv Si - Si \equiv + e^- \rightarrow = Si:e^-
```

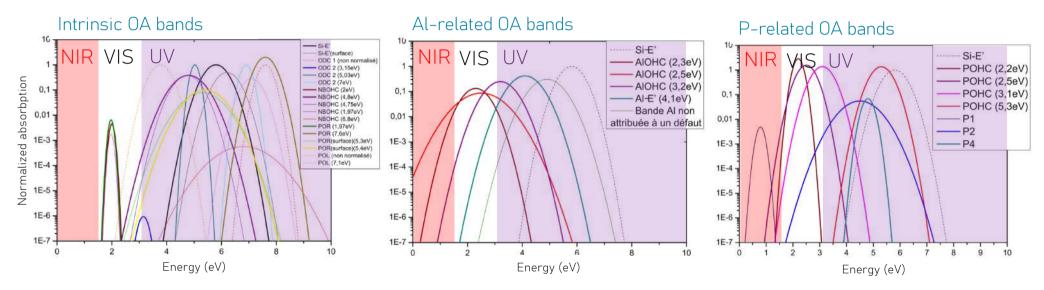


- Ionization → production on electron-hole pairs (« free » band carriers)
- Free electrons and holes can **trap** at
 - Intrinsic defect sites

```
for ex. oxygen deficient centers
as \equiv Si-Si \equiv + h^+ \rightarrow SiE' (i.e. \equiv Si \bullet)
or \equiv Si-Si \equiv + e^- \rightarrow = Si:e^-
```

Dopants-related sites

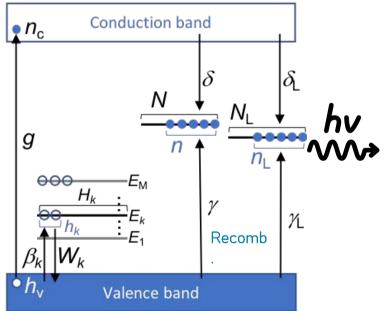

for ex.
$$\equiv$$
Al +Si \equiv + e⁻ \rightarrow AlE' (i.e. \equiv Al \bullet) or \equiv Al $-$ O $-$ Si \equiv + h⁺ \rightarrow Al $-$ OHC (i.e. \equiv Al \bullet) or Yb³⁺ + e⁻ \rightarrow Yb²⁺

- Formation of COLOR CENTERS
 - → optical absorption (OA) bands



Quasi-continuous distribution of trapped-hole states with activation energies < 2 eV

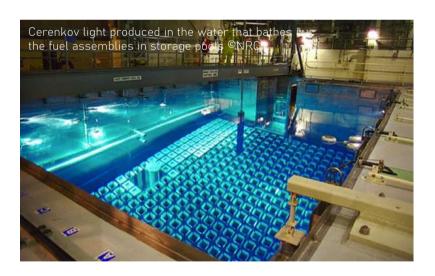
Well-known (gaussian) OA bands attributed to carriers trapped at defects


- No OA band peaking in the NIR range (notable exception of the P1 centers)
- Undoped silica is RIA-resistant in the NIR range (but still has RIA...??)
- Al-OHC bands have significant tails in the NIR \rightarrow detrimental role of Al

2 contributions

- 1. Inorganic scintillation = radioluminescence (RL)
 - Recombination of free carriers at trapped states of opposite polarity (direct generation or thermal/optical detrapping)
 - o Part of recombination is radiative >> RL
 - o In silica: free h+recombine with trapped e-
 - Scintillating from the glass matrix is weak.
 It must be « activated » by doping with

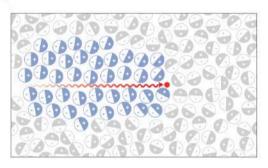
Rare-earth ions (Ce, Yb, Gd...), Ge, Cu, N, P...

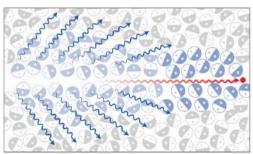


2 contributions

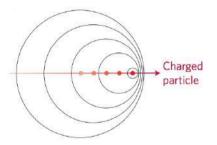
2. Cerenkov emission

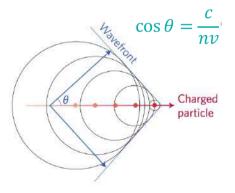
- o Only for charged particles travelling faster than light in the medium
- o Most often due to **secondary electrons** set in motion by photons or protons!



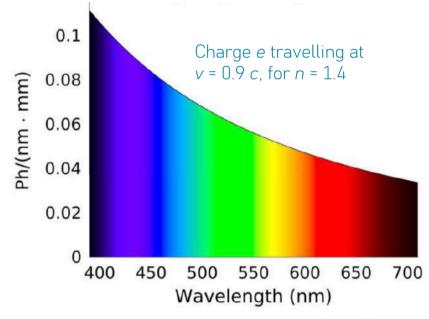

Cerenkov emission (optical equivalent to sonic boom)

- Charged particle in a dielectric medium (ref. index n > 1) with $v \ge \frac{c}{n}$
 - o Kinetic energy threshold


$$E \ge mc^2 \left(\frac{1}{\sqrt{1 - \frac{1}{n^2}}} - 1 \right)$$


o Thresholds in silica 350 MeV for protons 190 keV for electrons Relativistic particles

Schaffer et al., Nature Nanotech. 12, 106, 2017



Cerenkov light spectrum: Frank-Tamm's formula

Spectral density of energy radiated at wavelength λ per unit path length dx of a charged particle moving at velocity v in a medium with refractive index $n(\lambda)$

$$\frac{\partial^2 E}{\partial x \partial \lambda} = \frac{e^2}{4\pi \varepsilon_0} \times \frac{1}{\lambda^3} \times \left(1 - \frac{c^2}{n^2(\lambda)v^2}\right)$$

- Mainly violet-blue luminescence
- Enhanced intensity when v increases (above threshold)
- Continuous spetrum decreasing in $\sim 1/\lambda^3$ from UV to NIR.

Giarrocchi and Belcari, EJNMMI Physics 4, 14, 2017

1C - RIRIC (radiation-induced refraction index change)

The refractive index n of a dielectric medium relates to:

The volume density of polarisable units N, following the Clausius-Mossoti's law

$$\frac{n^2-1}{n^2+2}=\frac{N\alpha}{3\varepsilon_0}$$

The optical absorption coefficient α of the medium (due to Kramers-Kronig's relation applied to electric susceptibility)

$$n(\omega) = 1 + \frac{c}{\pi} \int_{0}^{\infty} \frac{\alpha(\omega')}{\omega'^2 - \omega^2} d\omega'$$

1C - RIRIC (radiation-induced refraction index change)

2 contributions to RIRIC

The compaction of the material increases N and n

$$\frac{n^2 - 1}{n^2 + 2} = \frac{N\alpha}{3\varepsilon_0}$$

- o Silica: if N increases by 1%, n increases by $\sim 5 \times 10^{-3}$
- o Requires high proton, neutron or electron fluences ($\sim 1 \times 10^{19}$ cm⁻²)
- o For example: doses of a few GGy under 2.5 MeV electrons (N. Ollier et al., Sci. Reports 13, 13657, 2023)

1C - RIRIC (radiation-induced refraction index change)

2 contributions to RIRIC

• The compaction of the material increases N and n

$$\frac{n^2 - 1}{n^2 + 2} = \frac{N\alpha}{3\varepsilon_0}$$

- o Silica: if N increases by 1%, n increases by $\sim 5 \times 10^{-3}$
- o Requires high proton, neutron or electron fluences (~1×10¹⁹ cm⁻²)
- o For example: doses of a few GGy under 2.5 MeV electrons (N. Ollier et al., Sci. Reports 13, 13657, 2023)
- RIA increases the absorption coefficient α of the medium and therefore n
 - o Main cause of RIRIC under photons (« moderate » doses)

$$n(\omega) = 1 + \frac{c}{\pi} \int_{0}^{\infty} \frac{\alpha(\omega')}{\omega'^2 - \omega^2} d\omega'$$

o Limited effect in silica n rises by $\sim 5 \times 10^{-6} / k$ Gy under gamma rays (60 Co) in germanosilicate fibers

2 • WHY SHOULD WE MITIGATE? HOW CAN WE EXPLOIT?

2A - RIA

2B - RIE

2C - RIRIC

Adverse effects

- Darkening: light transmission 🗲

- Shortens transmission distances
- Wavelenght-dependent effect (distorsion in multi-wavelenghts systems)
- SNR degradation
- In fiber lasers/amp.: GAIN ➤
 - Due to excess attenuation
 - Loss of active ions
 (RE³⁺ ions converted into RE²⁺ ions)

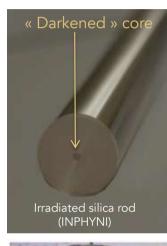
All effects

- Are almost permanent
- Increase with ionizing dose

Exploitable properties

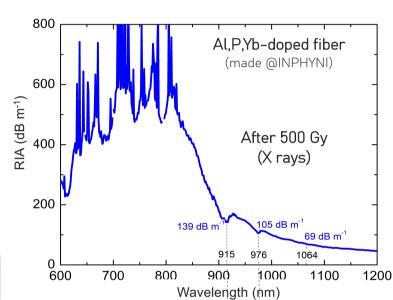
RIA grows with cumulated dose (almost always) → DOSIMETRY

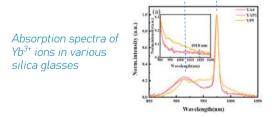
 Various models (nth order or fractal kinetics...)


Adverse effects

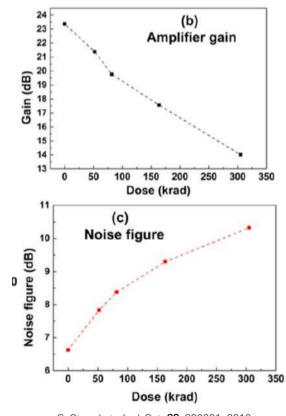
- Darkening: light transmission >

- Shortens transmission distances
- Wavelenght-dependent effect (distorsion in multi-wavelenghts systems)
- SNR degradation
- In fiber lasers/amp.: GAIN 🔊
 - Due to excess attenuation
 - Loss of active ions
 (RE³⁺ ions converted into RE²⁺ ions)


All effects


- Are almost permanent
- Increase with ionizing dose

H. Dong et al., Opt. Mat. 122, 111761, 2021


Adverse effects

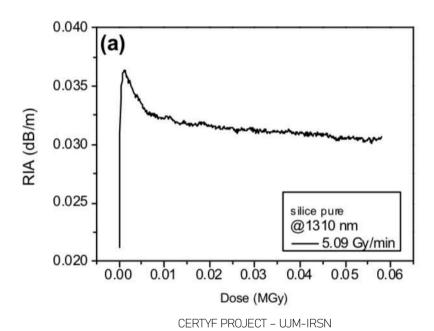
- Darkening: light transmission >
 - Shortens transmission distances
 - Wavelenght-dependent effect (distorsion in multi-wavelenghts systems)
 - SNR degradation
- In fiber lasers/amp.: GAIN 🦠
 - Due to excess attenuation
 - Loss of active ions
 (RE³⁺ ions converted into RE²⁺ ions)

All effects

- Are almost permanent
- Increase with ionizing dose

Gain and noise figure of an **Er-doped fiber amplifier** (EDFA) as a function of dose (simulation)

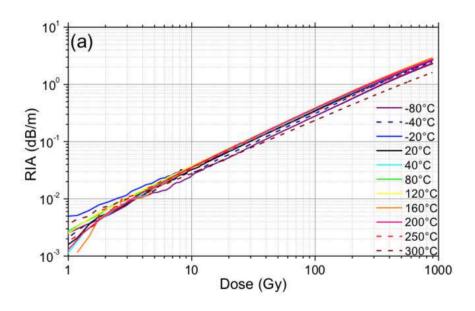
S. Girard et al., J. Opt. 20, 093001, 2018


Exploitable properties

RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)

In-core RIA @1310 nm of a pure silica core fiber (PSCF) under 60Co γ -irradiation

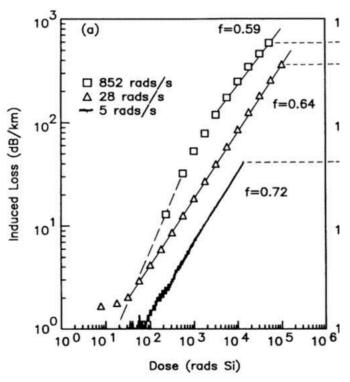

Non monotonic variation <u>at low dose rate</u>... but the origin of this **weak RIA** is not a color center Exploitable properties

RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)

In-core RIA @1550 nm of a **P-doped silica** fiber under X-ray irradiation (1 Gy s⁻¹)

A. Morana et al., IEEE Trans., Nucl. Sci. 68, 906, 2021


Exploitable properties

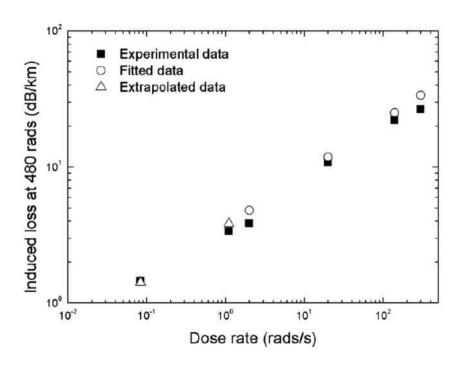
RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)

In-core RIA @1300 nm of a germanosilicate fiber under 60 Co γ -irradiation

D. Griscom et al., Phys. Rev. Lett. **71**, 1019, 1993

Exploitable properties


RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)

RIA = kD^f with 0 < f < 1

Dose-rate dependence?

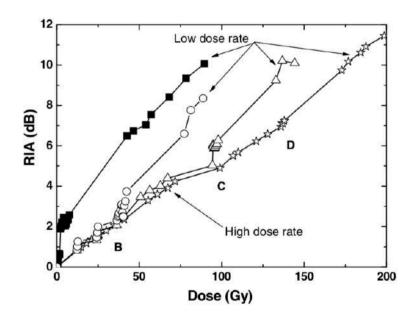
In-core RIA @1300 nm of a **germanosilicate** fiber under 60 Co γ -irradiation

O. Gilard et al., J. Appl. Phys. 108, 093115, 2010

Exploitable properties

RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)


RIA = kD^f with 0 < f < 1

Dose-rate dependence?

In-core RIA @1550 nm of an Er-doped fiber under $^{60}\text{Co}~\gamma$ -irradiation

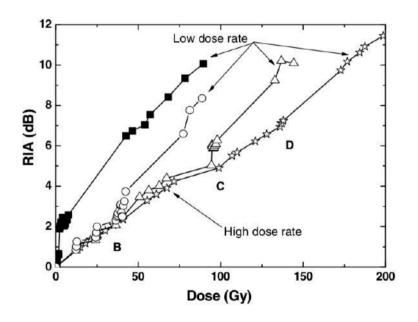
« Enhanced low-dose rate sensitivity » (ELDRS)

O. Gilard et al., Appl. Opt. **51**, 2230, 2012

Exploitable properties

RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)


RIA = kD^f with 0 < f < 1

Dose-rate dependence?... some ELDRS are reported

In-core RIA @1550 nm of an **Er-doped fiber** under $^{60}\text{Co}~\gamma$ -irradiation

« Enhanced low-dose rate sensitivity » (ELDRS)

O. Gilard et al., Appl. Opt. **51**, 2230, 2012

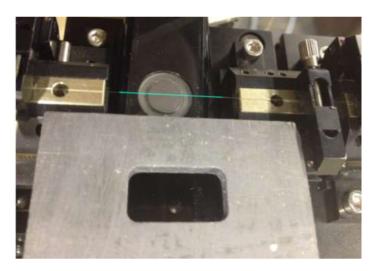
Exploitable properties

RIA grows with cumulated dose (almost always) → DOSIMETRY

 Various models (nth order or fractal kinetics...)

RIA = kD^f with 0 < f < 1

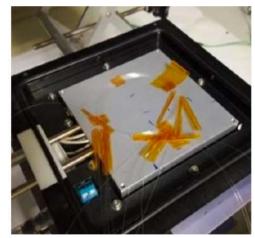
Dose-rate dependence?... some ELDRS are reported


How to measure RIA?

By subtracting attenuation coefficients (during/after irrad. - before irrad.)

- 'Local' measurements: short pieces (a few mm-cm) of fibers or preform slices
 - → OK for UV-VIS range, not for NIR where RIA is weak

Preform slice (INPHYNI)

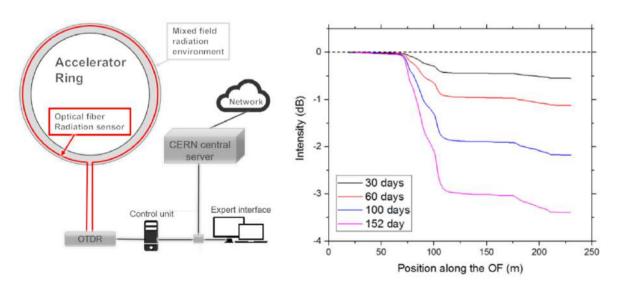

Pumped Yb-doped fiber irradiated through a 1-cm long aperture (INPHYNI)

How to measure RIA?

By subtracting attenuation coefficients (during/after irrad. - before irrad.)

- Measurements over long fibers to better assess RIA in the NIR range
 - → mean RIA over the fiber length (fiber coiled in an homogeneous radiation field)

Fiber coil to be irradiated in an X-ray generator (UJM, CERTYF Projet)



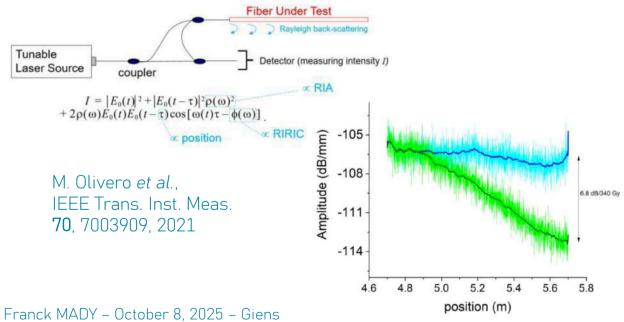
Arrangement of coils to be irradiated at the IRMA ⁶⁰Co γ -ray irradiator (IRSN, *CERTYF* Project)

How to measure RIA?

« Distributed measurement » by reflectometry in the time domain (OTDR)Allows « coarse » spatial resolution along « long » fibers but only at selected NIR wawelength (830, 1310, 1550 nm)

M. DiFrancesca *et al.*, IEEE Trans. Nucl. Sci. **65**, 1639, 2018

- P-doped fiber (NIR RIA due to P1 centers) implemented at the proton synchrotron booster at CERN for dosimetry
- Sensitivity = $4 dB km^{-1} Gy^{-1} @830nm$
- RIA, as a function of the position along the fiber, given by the plot derivatives
- Fiber lentgh: a few hundreds of meters
- Spatial resolution: ~1 m



2A - RADIATION-INDUCED ATTENUATION (RIA)

How to measure RIA?

By reflectometry in the frequency domain (OFDR)

Allows « high » spatial resolution along « short » fibers but only at selected NIR wawelength (around 1310, 1550 nm, C telecom band)

- Al-doped and Mg-doped NP fibers (INPHYNI)
- Sensitivity = $20 \text{ dB km}^{-1} \text{ Gy}^{-1} \otimes 1550 \text{nm}$
- RIA, as a function of the position along the fiber, given by the plot derivatives
- Fiber lentgh: a few meters (1 m here)
- Spatial resolution: < 10 μm for a 88 nmscanning width around 1550 nm
- Also allows « smooth » RIRIC to be measured!
- Suitable for medical applications

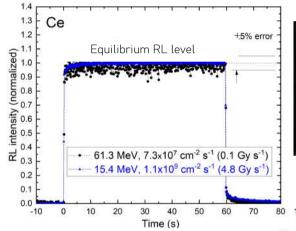
Adverse effects

Parasitic light produced under exposure. It may

- Be partly guided in fibers
- Mask weak signals
- Raise the noise floor (SNR lowering)
- Stimulate or quench emission in fiber amplifiers
- ...

RL and Cerenkov equilibrium intensities proportional to the fluence rate

RL, Cerenkov ∝ Nb of particles cm⁻² s⁻¹ VERY ROBUST PROPERTY

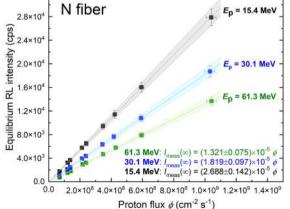

Adverse effects

Parasitic light produced under exposure. It may

- Be partly guided in fibers
- Mask weak signals
- Raise the noise floor (SNR lowering)
- Stimulate or quench emission in fiber amplifiers
- ...

RL and Cerenkov equilibrium intensities proportional to the fluence rate

Under protons (CAL-INPHYNI)

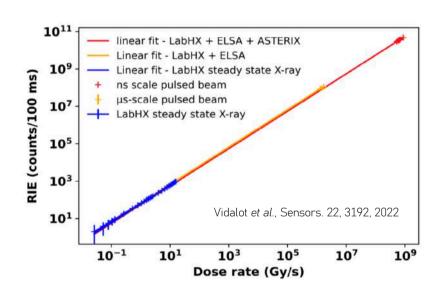


R&D proton beamline (max. 65 MeV, CAL Nice)

Examples:

Ce- and N-doped silica fibers

Adverse effects

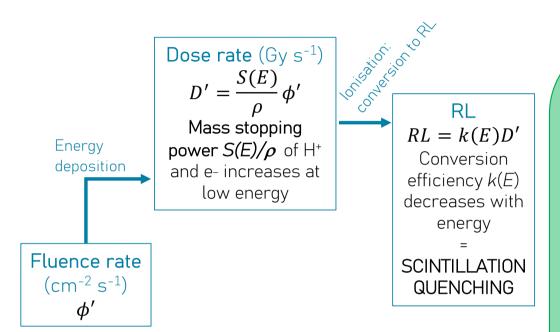

Parasitic light produced under exposure. It may

- Be partly guided in fibers
- Mask weak signals
- Raise the noise floor (SNR lowering)
- Stimulate or quench emission in fiber amplifiers
- ...

RL and Cerenkov equilibrium intensities proportional to the fluence rate

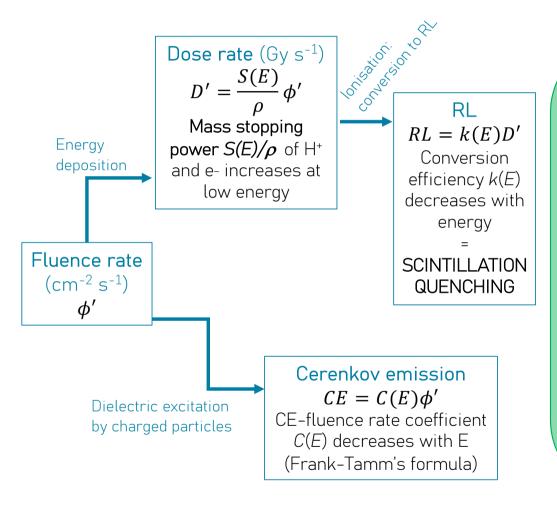
RL, Cerenkov ∝ Nb of particles cm⁻² s⁻¹ VERY ROBUST PROPERTY

Under X rays (photons) Dose rate proportional to fluence rate


Linearity over 10 decades, at least

Exploitable properties

- Metrology of fluence rate?
- Not directly the dose rate...
- Pb with measuring dose or dose rate as a function of depth



Exploitable properties

- Metrology of fluence rate?
- Not directly the dose rate...
- Pb with measuring dose or dose rate as a function of depth

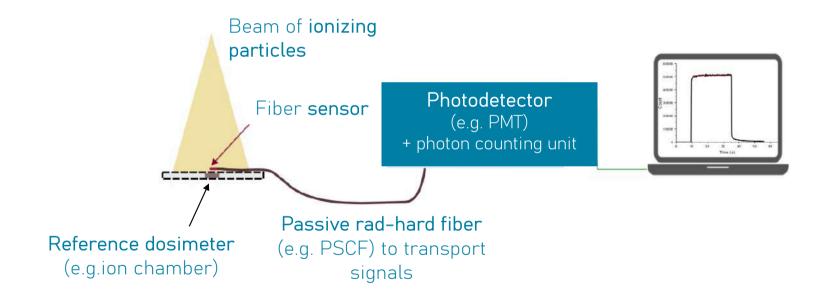
Exploitable properties

- Metrology of fluence rate?
- Not directly the dose rate...
- Pb with measuring dose or dose rate as a function of depth

 Cerenkov intensity does not result from the absorbed dose rate. Only provides a measure of the fluence rate of charged particles (above threshold), but with a decreasing in-depth sensitivity. Exploitable properties

- Metrology of fluence rate?
- Not directly the dose rate...
- Pb with measuring *dose* or *dose rate* **as a function of depth**

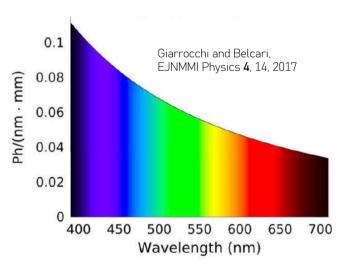
- Cerenkov intensity does not result from the absorbed dose rate. Only provides a measure of the fluence rate of charged particles (above threshold), but with a decreasing in-depth sensitivity.
- RL intensity: a consequence of the absorbed dose rate.
 - o Photons: penetrate the material at constant energy (only their fluence decreases).
 - → No depth dependence of the RL-dose rate coefficient (RL sensitivity)
 - o **Protons are stopped**: their energy decreases as they penetrate the medium
 - → RL sensitivity loss (scint. quenching)

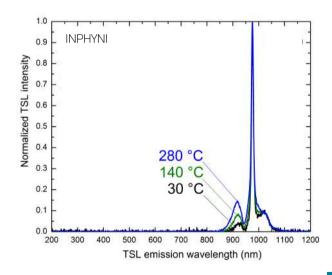

Exploitable properties

- Metrology of fluence rate?
- Not directly the dose rate...
- Pb with measuring *dose* or *dose rate* **as a function of depth**

How to measure RIE?

Very straightforward technique!

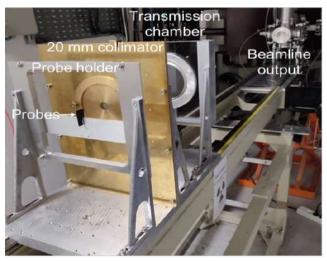


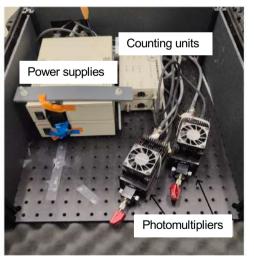

How to separate RL from Cerenkov light (when it does exist)?

Spectral filtering

Choose activator ions (dopants) that preferentially emit sharp lines in the NIR range (as Yb³⁺ ions), well separated from the broad Cerenkov spectral range (rather in the UV-blue). Then, use an optical filter.

Some Cerenkov light remains in the filtered signal...

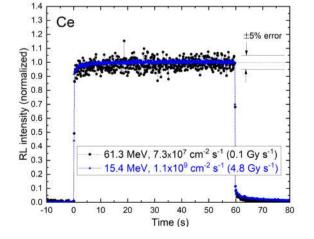




How to separate RL from Cerenkov light (when it does exist)?

- Signal subtraction
 - Use two acquisition channels in the same irradiation field: 1 with an RL activated sensor, the other with an undoped sensor that only measures the Cerenkov light.

 Then, subtract the two signals to remove the Cerenkov contribution.
 - The 2 measurement channels must be strictly identical + you also remove RL from matrix...


How to separate RL from Cerenkov light (when it does exist)?

- Time gating in the time-resolved detection of pulsed irradiations
 - Cerenkov is prompt, appearing in ps to ns;
 - Inorganic RL has a long transient growth (ms) and decays slowly (phosphorescence)

Using a **fast photodector**, it is possible to detect the Cerenkov during the pulse and to **delay the RL measurement** after the prompt signal has faded.

Requires an enhanced and very sensitive time-resolved detection + measures

phosphorescence rather than RL.

Marjorie GRANDVILLAIN PhD dissertation, INPHYNI-CAL RL under protons from a Ce-doped silica fibers

2C - RADIATION-INDUCED REFR. INDEX CHANGE (RIRIC)

Adverse effects

Exploitable properties

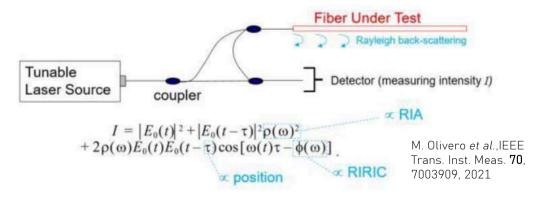
Opto-geomatrical parameters of the fibers can be modified

- Numerical aperture
- → Cutoff wavelength
- → Risk of fundamental mode loss
- Bragg wavelenght shift in FBG sensors

Increase with RIA and density, so a priori with the absorbed dose

→ Opportunities for DOSIMETRY

Difficulty under photons and low particle fluences, because RIRIC can be hard to measure

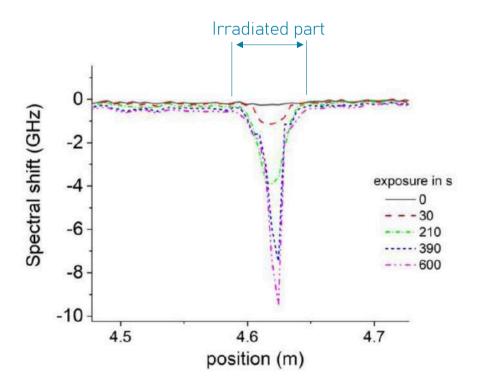


2C - RADIATION-INDUCED REFR. INDEX CHANGE (RIRIC)

How to measure RIRIC?

Most simple realtime techniques are the reflectometry-based ones, namely OTDR and OFDR.

- OTDR senses backscattered power, not directly phase or index.
 Only detects large (> 10⁻³) and localized change in the refractive index as, e.g., those causing Fresnel reflection.
- OFDR is a phase-resolved measurement technique, inherently sensitive to RIRIC. Detects both
 sharp and smooth small changes in the refractive index, with good spatial resolution.



Can also probe the RIRIC through the spatially-resolved **shift of the Rayleigh spectra**

2C - RADIATION-INDUCED REFR. INDEX CHANGE (RIRIC)

How to measure RIRIC?

Spectral shift of the Rayleigh spectrum along an Al-doped fiber under soft X rays @ 700 Gy min⁻¹

M. Olivero et al., IEEE Trans. Inst. Meas. 70, 7003909, 2021

- → One of the rare (unic?) examples of time- and spatially-resolved RIRIC monitoring under soft X rays (weak RIRIC), with high spatial resolution
- \rightarrow Sensitivity to be improved to meet requirements of medical applications (dose level \sim 1 Gy).

3 • SPACE APPLICATIONS

- RIA is the main issue
- Low dose rates
- Fibers should be « radiation-hardened »

3 • SPACE APPLICATIONS

- RIA is the main issue
- Low dose rates
- Fibers should be « radiation-hardened »
- 3A Silica-based fibers in space
- 3B The space harsh environment
- 3C Radiation hardening techniques (against RIA)
- 3D How to take advantage of low dose rates in active fibers

3A - SILICA FIBERS IN SPACE

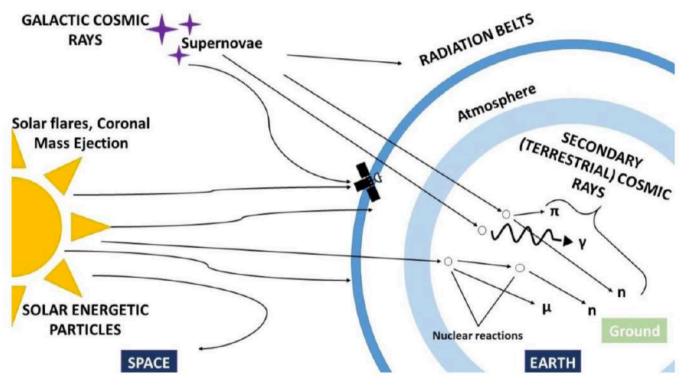
Mainly: active fibers: doped with Er, Yb, or co-doped ErYb (also Al, P)

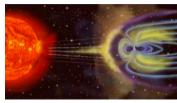
- High-speed data transfer with high output-power lasers
 - o Optical links (LEO-GEO, LEO-LEO, down link, up link)
 - o Sensing, mapping (LIDAR: topography, detection)

- Fiber-optics gyroscopes (FOGs)
 - o Erbium-doped fiber amplifier (broadband 1550 nm ASE source)
- Scientific instruments
 - Active spectrometers to Mars, Venus...
 - o Stabilized lasers for space optical clocks
 - O ...

3A - SILICA FIBERS IN SPACE

Mainly: active fibers: doped with Er, Yb, or co-doped ErYb (also Al, P)


- High-speed data transfer with high output-power lasers
 - o Optical links (LEO-GEO, LEO-LEO, down link, up link)
 - o Sensing, mapping (LIDAR: topography, detection)



- Fiber-optics gyroscopes (FOGs)
 - o Erbium-doped fiber amplifier (broadband 1550 nm ASE source)
- Scientific instruments
 - o Active spectrometers to Mars, Venus...
 - o Stabilized lasers for space optical clocks
 - O ...

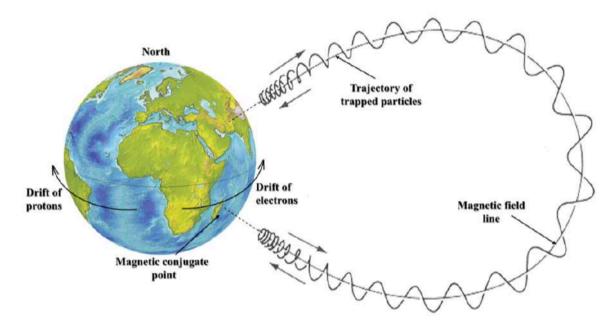
Passive fibers (Sagnac fibers in FOGs, signal or laser transport...)

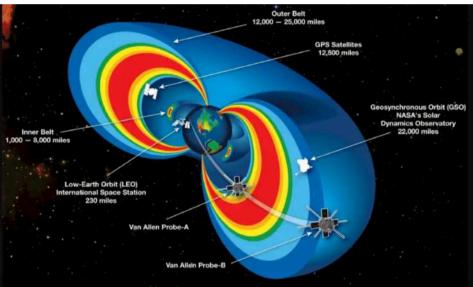
GCR

Protons (~87 %)
Alpha particles (~12 %)
Electrons and other heavy ions (~1%)
Up to a few GeV or even TeV per nucleon

SEP

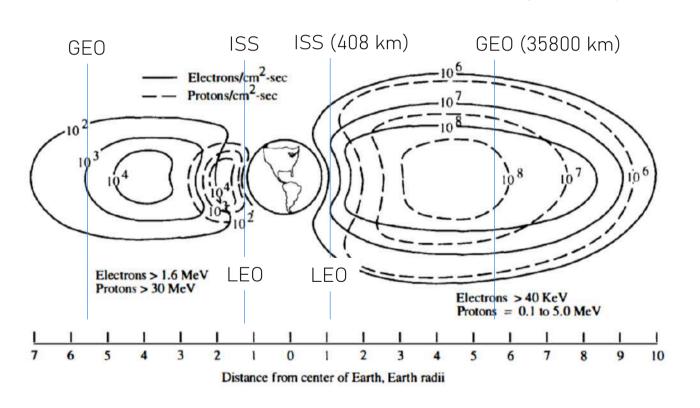
Protons
Alpha particles
Other heavy ions
From 10 to several hundreds of MeV


Energetic photons


Gamma rays (from nuclear reactions) X rays (from stopping particles) From keV to a few MeV

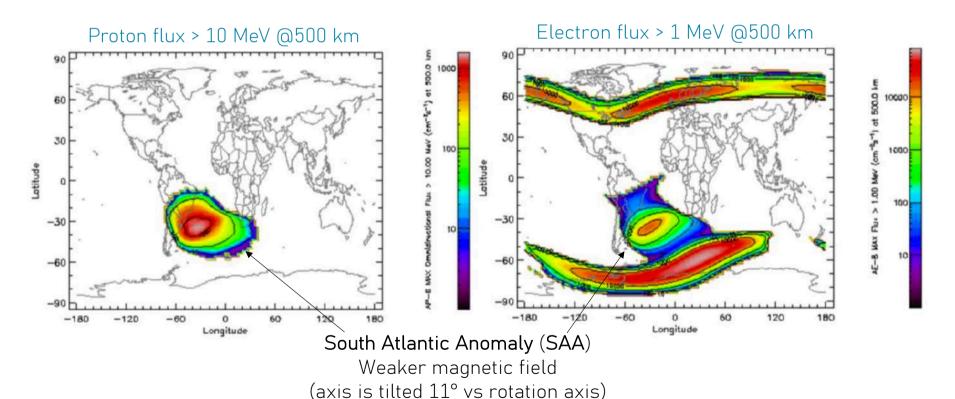
For space applications (satellites)

→ Van Allen belts (protons and electrons trapped by the magnetic fied of Earth)



For space applications (satellites)

→ Van Allen belts (protons and electrons trapped by the magnetic fied of Earth)



LEO
High energy protons
Low energy electrons

For space applications (satellites)

→ Fluence rates depend on the strength of the magnetic field (SAA)

Typical dose rate and dose over a mission

Dose rate by charged particles
$$D' = \frac{S(E)}{\rho} \phi'$$
 i.e.

$$D'(\text{Gy h}^{-1}) = 5.77 \times 10^{-7} \times \frac{S(E)}{\rho} (\text{MeV cm}^2 \text{ g}^{-1}) \times \phi'(\text{cm}^{-2} \text{s}^{-1})$$

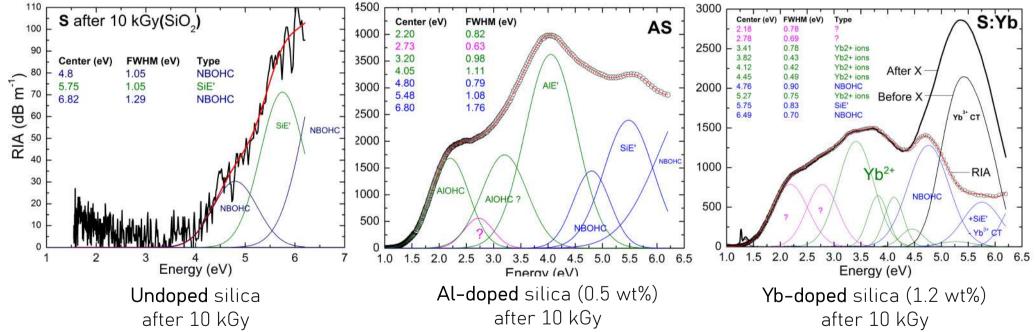
Orbit	Proton energy (MeV)	Stop. Power silica (MeV cm ⁻¹)	Flux (cm ⁻² s ⁻¹)		15-year DOSE @max. flux (Gy)
LE0	< 500	> 2.302	< 104	> 0.013	1700
GE0	< 5	> 61.76	< 108	> 3562	4.7×10^8

Typical dose rate and dose over a mission

Dose rate by charged particles
$$D' = \frac{S(E)}{\rho} \phi'$$
 i.e.

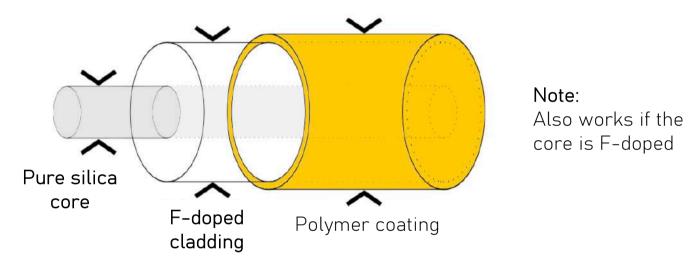
$$D'(\text{Gy h}^{-1}) = 5.77 \times 10^{-7} \times \frac{S(E)}{\rho} (\text{MeV cm}^2 \text{ g}^{-1}) \times \phi'(\text{cm}^{-2} \text{s}^{-1})$$

Orbit	Proton energy (MeV)	Stop. Power silica (MeV cm ⁻¹)	Flux (cm ⁻² s ⁻¹)		15-year DOSE @max. flux (Gy)
LE0	< 500	> 2.302	< 104	> 0.013	1700
GEO	< 5	> 61.76	< 108	> 3562	4.7×10^{8}


Usually considered values: $10^{-6} < D' < 10^{-3}$ Gy h⁻¹ and $1 < D_{15y} < 10^{3}$ Gy Depends on orbit, shielding, solar events...

Hardening by component

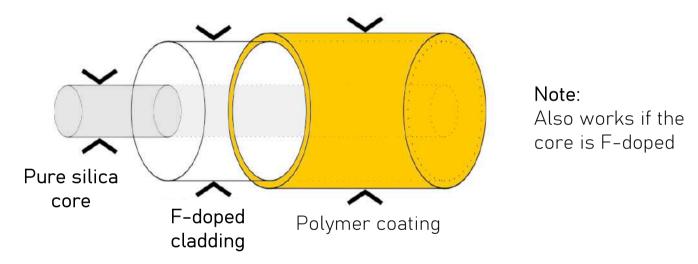
« Pure » (undoped) silica very resistant to RIA



F. Mady *et al.*, Opt. Mat. Express **9**, 2466, 2019

Hardening by component

Pure silica core fibers (PSCF) can serve as rad-hard passive fibers

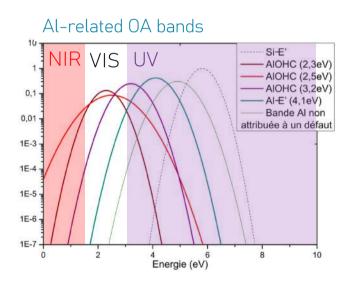


• The level of radiation-hardening depends on the operating spectral range and on impurities (Cl, OH groups: 'wet' vs 'dry' silica).

Hardening by component

• Pure silica core fibers (PSCF) can serve as rad-hard passive fibers

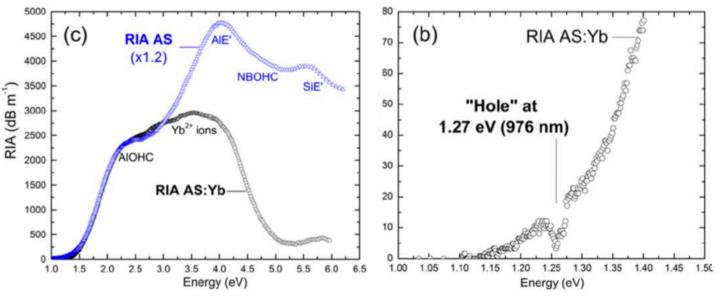
• The level of radiation-hardening depends on the operating spectral range and on impurities (Cl, OH groups: 'wet' vs 'dry' silica).


What about active fibers?

Hardening by component

Active fibers (Er- or/and Yb-doped)

• Most often contain Al which induces RIA in the NIR region because of broad Al-OHC absorption bands peaking at 3.2 eV (388 nm) and 2.3 eV (539 nm).



Hardening by component

Active fibers (Er- or/and Yb-doped)

 Most often contain Al which induces RIA in the NIR region because of broad Al-OHC absorption bands peaking at 3.2 eV (388 nm) and 2.3 eV (539 nm).

Yb,Al-doped silica (3;0.6 wt%) after 10 kGy

F. Mady et al., Opt. Mat. Express 9, 2466, 2019

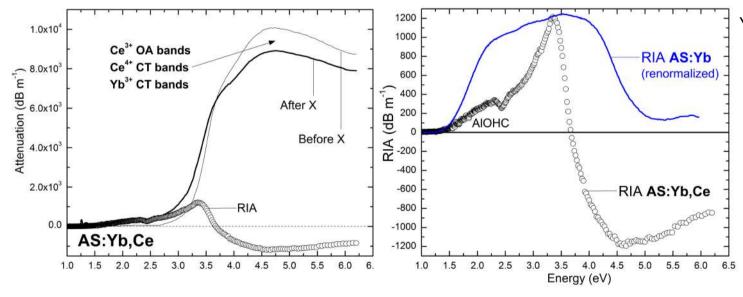
- Yb strongly suppresses AlE' centers at constant [Al-OHC]
- Electrons are rather captured by Yb³⁺ (then reduced into Yb²⁺ ions)

Franck MADY - October 8, 2025 - Giens

Hardening by component

Hardening of active fibers by cerium co-doping

An « old empirical recipe » (J.S. Stroud, J. Chem. Phys. 37, 836, 1962)

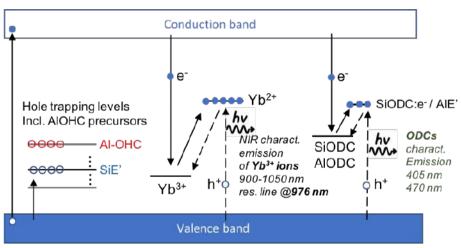

The twofold benefit of Ce doping

- → Strongly reduces the NIR RIA under irradiation (density of Al-OHCs)
- → Accelerates post-irradiation recovery of the optical absorption (fast RIA decay @RT)

Hardening by component

Hardening of active fibers by cerium co-doping

Yb,Al,Ce-doped silica (1.5;1.3;1 wt%) after 10 kGy


F. Mady et al., Opt. Mat. Express 9, 2466, 2019

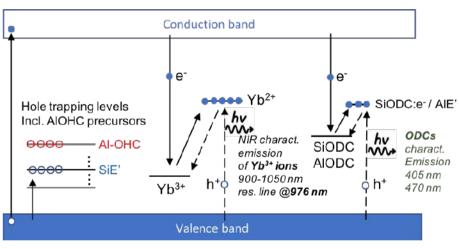
- Ce³⁺ ions disappear under irradiation.
- At similar [Yb²⁺ ions] formed, much less Al-OHC
- Holes rather captured by Ce³⁺ ions (then Ce⁴⁺)

Hardening by component

Hardening of active fibers by cerium co-doping

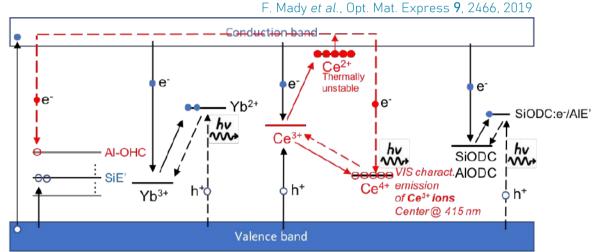
Degradation:

- Electron trapping forms stable Yb²⁺ ions
- Hole trapping forms SiE', Al-OHC...


Annealing: Thermally released holes recombine with electrons in Yb²⁺ ions, reforming Yb³⁺ ions

F. Mady et al., Opt. Mat. Express 9, 2466, 2019

Hardening by component


Hardening of active fibers by cerium co-doping

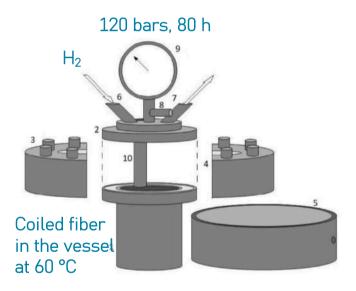
Degradation:

- Electron trapping forms stable Yb²⁺ ions
- Hole trapping forms SiE', Al-OHC...

Annealing: Thermally released holes recombine with electrons in Yb²⁺ ions, reforming Yb³⁺ ions

Degradation: as before + amphoteric trapping at Ce³⁺ ions

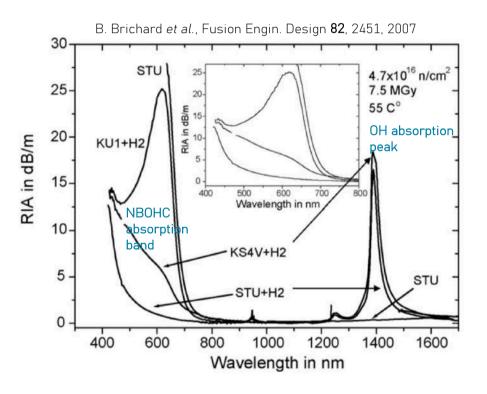
- Ce⁴⁺ ions are formed instead of Al-OHC
- Highly unstable Ce²⁺ are formed instead of stable Yb²⁺


Annealing: as before + detrapped electrons recombine to Al-OHC (swift post-irrad. decay) and to Ce^{2+} , reforming Ce^{3+}

Hardening by pre-treatment

Loading fibers (PSCF mainly) with H_2 or D_2

→ Reduces precursor sites for the formation of *certain* color centers



C. Campanella, PhD dissertation, 2022

3C - RADIATION-HARDENING TECHNIQUES (against RIA)

Hardening by pre-treatment

Main benefit

Reduces the visible RIA due to NBOHC, around 610 nm

$$2 \text{ Si-O} \bullet + \text{H}_2 \rightarrow 2 \text{ Si-O-H}$$

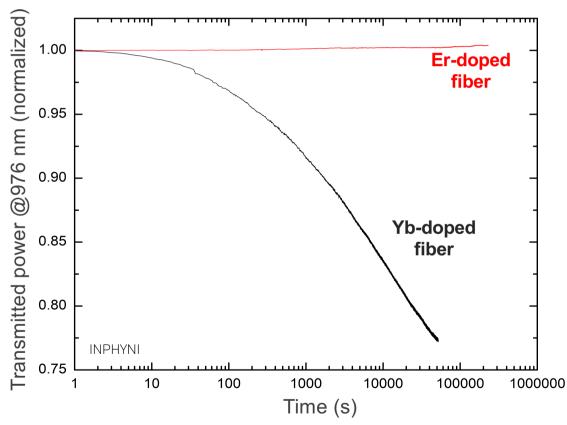
NBOHC Hydroxyl termination

Main drawbacks

- Hydroxyl groups increase optical absoprtion in the NIR range
- H-related defects H(I) and H(II) absorb in the UV region
- Transient benefit: hydrogen out-diffuse within a few days
- Carbon or metal coating required to significantly extend this period

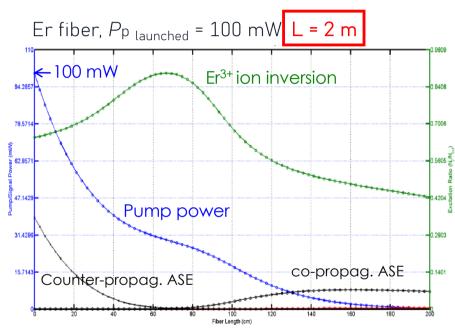
Active fibers (fiber amplifiers, lasers) are pumped during operation!

- Yb-doped fibers: pump responsible for photo-darkening (PD)
 - o Cooperative de-excitation of 3 Yb³⁺ ions (UV) absorbed in the first CT band of another Yb³⁺ ion \rightarrow Yb²⁺ ion + trapped hole (Al-OHC) (F. Mady et al., AIP Conf. Proc. **1624**, 87, 2014)
 - O Trapped hole centers are the same as those induced by ionizing radiation (F. Mady et al., Opt. Lett. 35, 3541, 2010)
 - o Radiation-induced and pump-induced effects can compete...



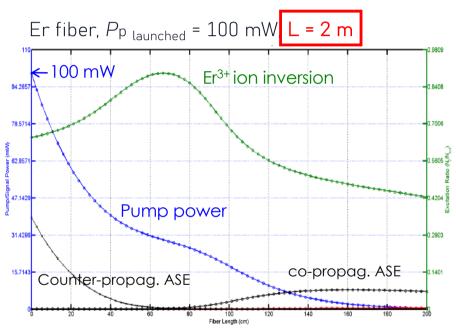
Active fibers (fiber amplifiers, lasers) are pumped during operation!

- Yb-doped fibers: pump responsible for photo-darkening (PD)
 - o Cooperative de-excitation of 3 Yb³⁺ ions (UV) absorbed in the first CT band of another Yb³⁺ ion \rightarrow Yb²⁺ ion + trapped hole (Al-OHC) (F. Mady *et al.*, AIP Conf. Proc. **1624**, 87, 2014)
 - O Trapped hole centers are the same as those induced by ionizing radiation (F. Mady et al., Opt. Lett. 35, 3541, 2010)
 - o Radiation-induced and pump-induced effects can compete...
- Er-doped fibers: no significant PD reported
 - The pump can only « bleach » radio-induced darkening



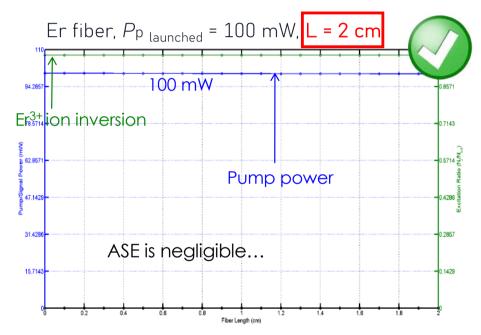
Active fibers (fiber amplifiers, lasers) are <u>pumped</u> during operation!

Proper characterization of pump effects: short fiber pieces!


Inhomogeneous pump power

 \rightarrow limpact on the RIA depending on L...

No intrinsic characterization of 'physics'


Proper characterization of pump effects: short fiber pieces!

Inhomogeneous pump power

 \rightarrow limpact on the RIA depending on L...

No intrinsic characterization of 'physics'



Homogeneous pump power and inversion
Pump-induced effets fully characterized by the
well-controled launched power

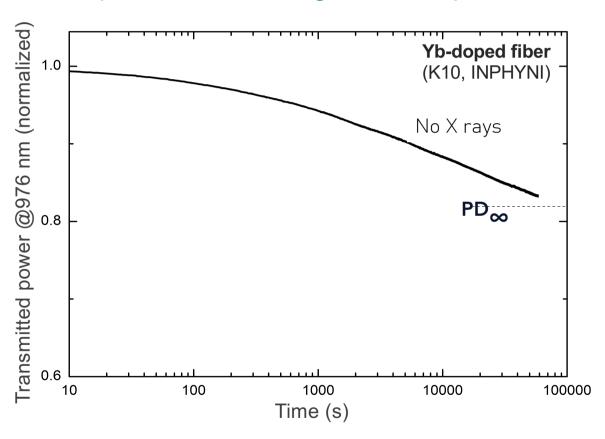
Intrinsic characterization of the pump power effect

Proper characterization of pump effects: short fiber pieces!

- Both pump power and dose rate can be varied during experiments
- Realtime monitoring of the dose rate and cumulated dose

« Home made » and commercial samples

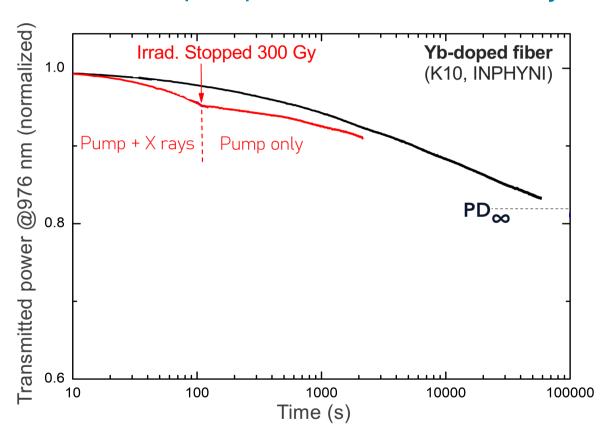
	Er-doped fibers	Yb-doped fibers
Fibers made at INPHYNI, Nice (MCVD + solution doping)	M04 $[Er^{3+}] = 2.8 \times 10^{19} \text{ cm}^{-3}$ 72 dB m ⁻¹ @ 1530 nm	K10 [Yb ³⁺] = 4,5 x 10 ¹⁹ cm ⁻³ 575 dB m ⁻¹ @ 976 nm
Commercial fibers « COTS »	Er80 (Liekki) [Er ³⁺] = 3 x 10 ¹⁹ cm ⁻³ 80 dB m ⁻¹ @ 1530 nm	Yb1200 (Liekki) [Yb ³⁺] = 9,4 x 10 ¹⁹ cm ⁻³ 1200 dB m ⁻¹ @ 976 nm


INPHYNI samples: aluminosilicate matrix with [Al] ≈ 1 wt. %

Commercial samples: undisclosed composition (Yb1200 contains Ce)

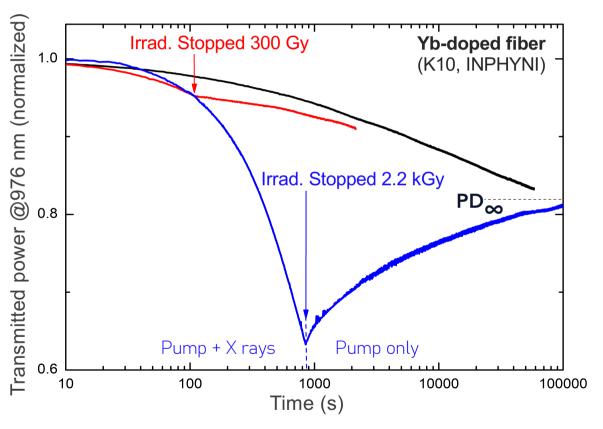
Both « home-made » and COTS fibers behave exactly in the same way

Pure photo-darkening in Yb-doped fibers (pump only)



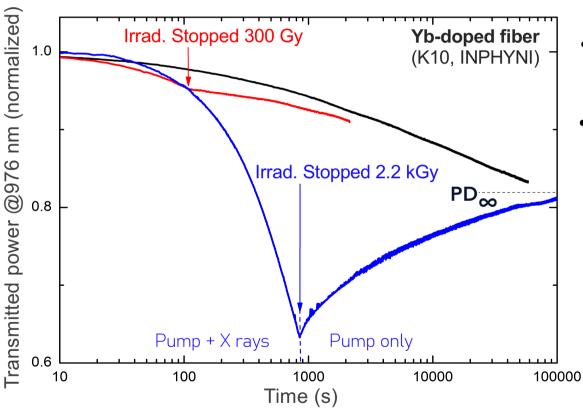
Strong PD for Yb fibers

Transmission decays towards an equilibrium level $PD_{\infty} \sim 0.82$ here


Role of the pump (976 nm) under X rays

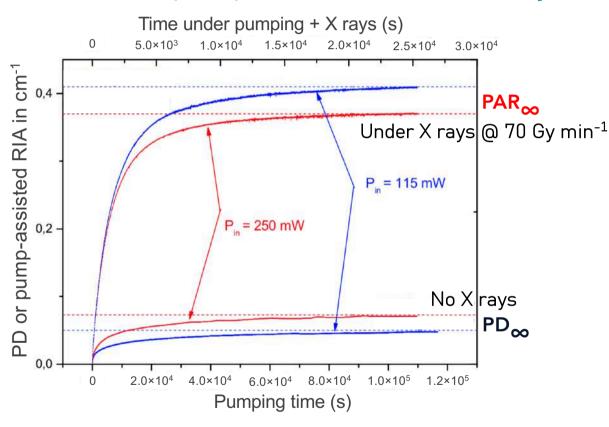
- Increased degradation rate
- Irradiation stops before PD_∞ is reached → The pump continues to photodarken the fiber towards PD_∞

Role of the pump (976 nm) under X rays



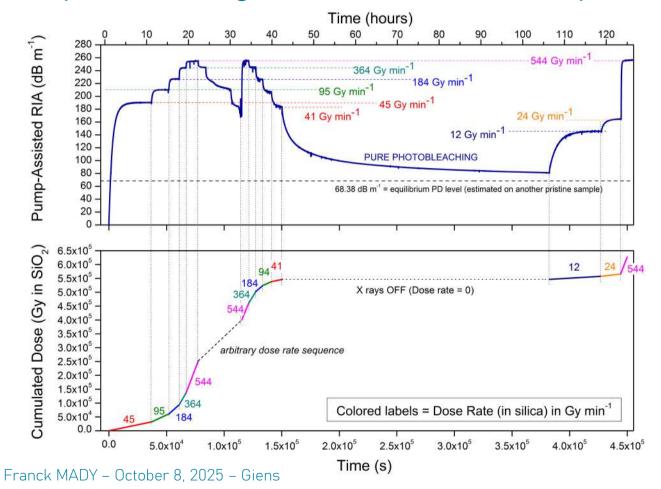
- Increased degradation rate
- Irradiation stops before PD_∞ is reached → The pump continues to photodarken the fiber towards PD_∞
- Irradiation stops after PD_∞ is excedeed → The pump bleaches the fiber towards PD_∞

PhotoBleaching = PB


Role of the pump (976 nm) under X rays

- The pump, responsible for PD, can also be a mitigation agent against RIA!
- PD + PB → PD_∞ is well an equilibrium level, not saturation

Role of the pump (976 nm) under X rays

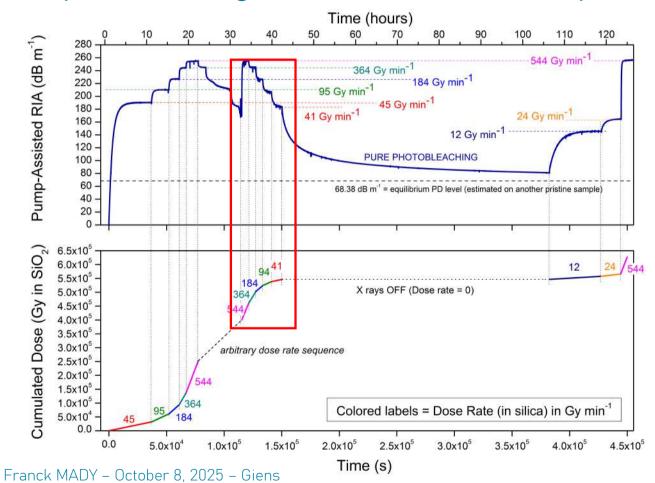


Pump + Irradiation:

- RIA balanced by pump-induced PB
- → Equilibrium level of the « Pump-Assisted-RIA » (PAR)
- PAR_∞ decreases when Pp increases (increased power → increased PB)

Equilibrium degradation levels in Yb-doped fibers

Continuous experiment > 130 h on a single Yb fiber sample (INPHYNI K10, L = 2 cm)


Total cumulated dose > 640 kGy

Constant P_p (368 mW) but dose rate switched as soon as a PAR $_{\infty}$ is reached

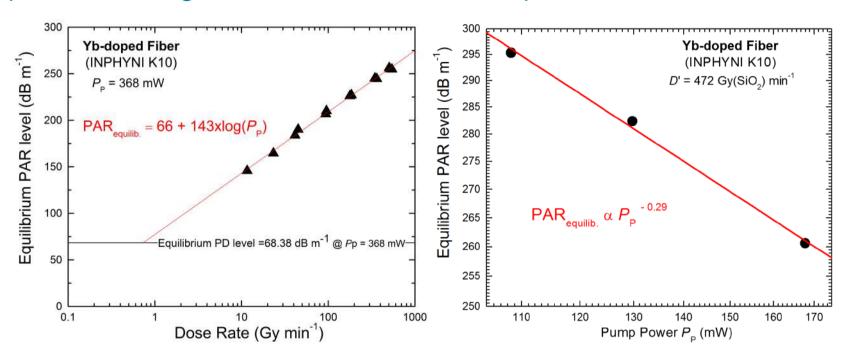
Identical experiments done where pump power is switched at fixed dose rate

Equilibrium degradation levels in Yb-doped fibers

Continuous experiment > 130 h on a single Yb fiber sample (INPHYNI K10, L = 2 cm)

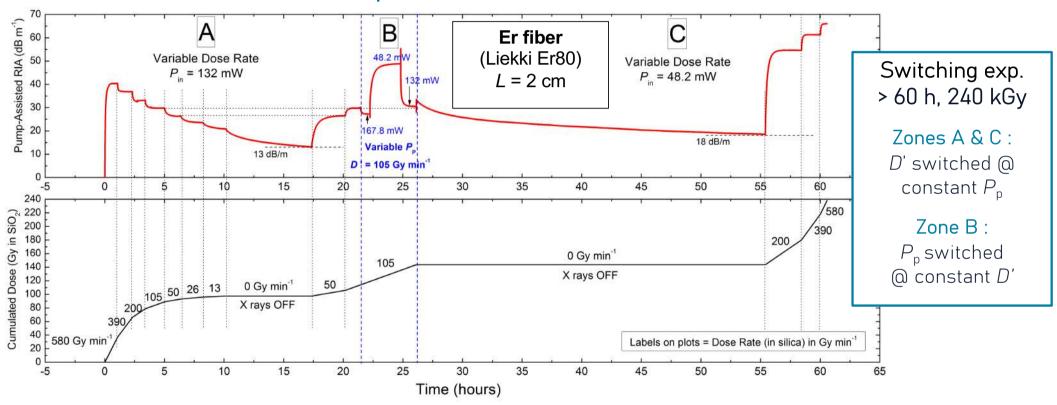
Total cumulated dose > 640 kGy

Constant P_p (368 mW) but dose rate switched as soon as a PAR_{∞} is reached

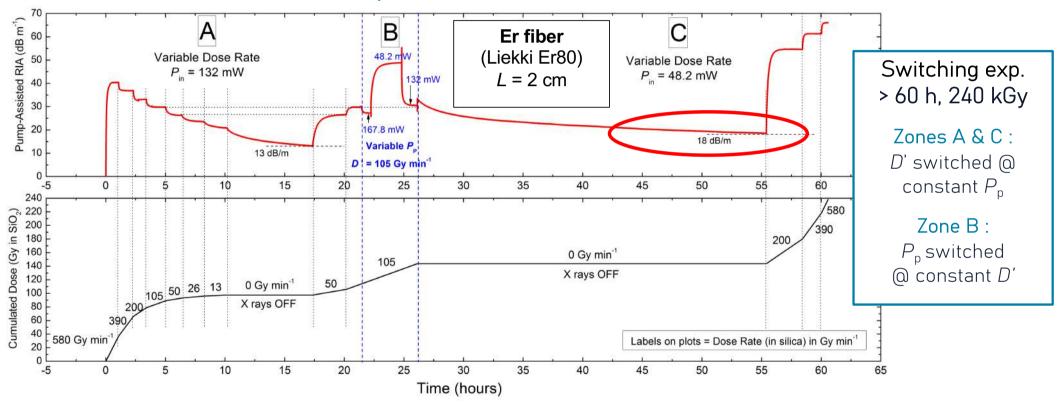

Identical experiments done where pump power is switched at fixed dose rate

Local equilibrium PAR, levels are:

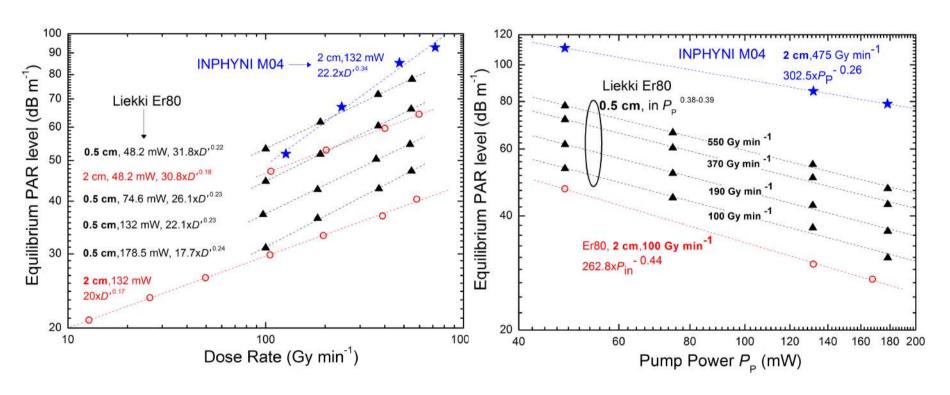
- Reversible, tunable
 Degradation can decrease while the dose is increased!
- Determined by the dose rate/pump power
 Not by the irradiation history or the cumulated dose!


Equilibrium degradation levels in Yb-doped fibers

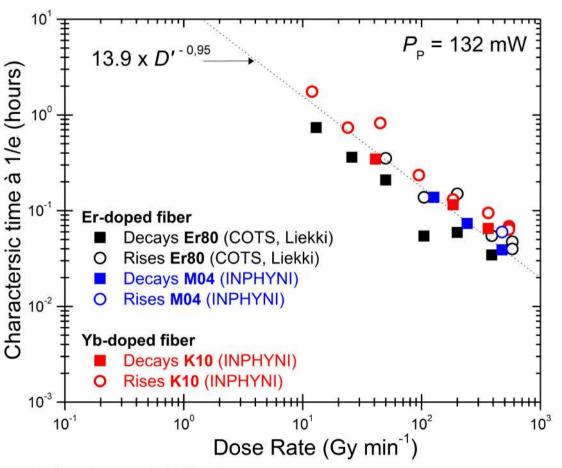
- Local degradation level only determined by the local (P_p,D') couple
- Identical properties for COTS fibers


Similar results for Er-doped fibers

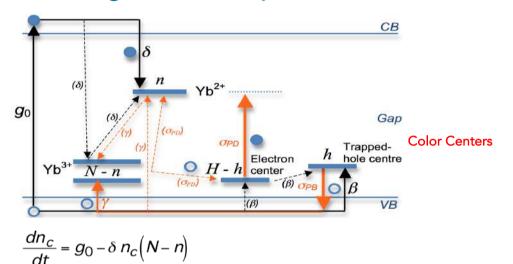
Again, reversible equilibrium degradation levels, fully determined by the local couple (D', P_P)


Similar results for Er-doped fibers

Pump only: no PD but residual RIA \rightarrow Part of color centers absorbing @976 nm not bleached


Similar results for Er-doped fibers

Equilibrium pump-assisted RIA (PAR) $\propto D'^{\alpha} P_{p}^{-\beta}$


Transient kinetics towards PAR_∞ for Yb- and Er-doped fibers

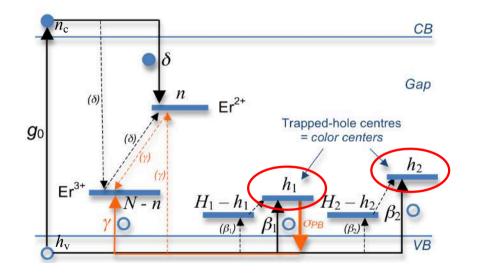
- Similar kinetics for Yb and Fr fibers
- Similar kinetics for « home-made » and COTS fibers
- Characteristic times approx. inversely proportional to the dose rate
- Decays tend to be faster than rises

Modeling for Yb-doped fibers

•
$$q_0$$
 = Dose rate

- n_c = Electron concentration in CB
- h_v = Hole concentration in VB
- x_{inv} = inversion rate of Yb³⁺ ions (P_p)
- τ = Radiative lifetime of Yb³⁺ ions
- N_V = Equivalent DOS of the VB
- σ_{PD} = PD coefficient
- σ_{PB} = Photoionization and PB coefficient

$$\frac{dn}{dt} = \delta n_c (N - n) + \sigma_{PD} \frac{x_{inv} (N - n)^4}{\tau^3} (H - h) - \gamma h_v n$$


$$\frac{dh}{dt} = \beta h_{V}(H - h) + \sigma_{PD} \frac{x_{inv}^{4}(N - n)^{4}}{\tau^{3}} (H - h) - \sigma_{PB} \frac{x_{inv}^{2}(N - n)^{2}}{\tau^{2}} N_{V} h$$

$$\frac{dh_{V}}{dt} = g_{0} - \beta h_{V}(H - h) + \sigma_{PB} \frac{x_{inv}(N - h)^{2}}{T^{2}} N_{V}h - \gamma h_{V}h$$

PD involves 4 excited Yb³⁺ ions

-PB triggered by 2 excited Yb $^{3+}$ ions

Modeling for Er-doped fibers

$$\frac{\partial n_{\rm c}}{\partial t} = g_0 - \delta n_{\rm c}(N - n)$$

$$\frac{\partial n}{\partial t} = \delta n_{\rm c}(N - n) - \gamma h_{\rm v}n$$

$$\frac{\partial h_1}{\partial t} = \beta_1 h_{\rm v}(H_1 - h_1) - \sigma_{\rm PB} P_p^2 N_{\rm v} h_1$$
PB triggered by 2 pump-photon absorption
$$\frac{\partial h_2}{\partial t} = \beta_2 h_{\rm v}(H_2 - h_2)$$

$$\frac{\partial h_{\rm v}}{\partial t} = g_0 - \beta_1 h_{\rm v}(H_1 - h_1) - \beta_2 h_{\rm v}(H_2 - h_2) + \sigma_{\rm PB} P_p^2 N_{\rm v} h_1 - \gamma h_{\rm v} n$$

- no PD
- Existence of an additional, deep « unbleachable » hole level
- PB not triggered by de-excitation of active ions, but by 2 pump photons

Implementation in PDE for short fibers

Without degradation (standard PDE for short samples)

No signal, no ASE

 \rightarrow Pump power P(z,t) and inversion $x_{inv}(z,t)$ only

$$\frac{\partial x_{\text{inv}}(z,t)}{\partial t} = \frac{\sigma_{\text{P}} \Gamma}{Shv_{\text{P}}} P(z) [1 - x_{\text{inv}}(z,t)] - \frac{x_{\text{inv}}(z,t)}{\tau}$$

$$\frac{\partial P(z,t)}{\partial z} = -\sigma_{\rm P} \Gamma P(z,t) N(z) [1 - x_{\rm inv}(z,t)]$$

Implementation in PDE for short fibers

Without degradation (standard PDE for <u>short samples</u>) No signal, no ASE

 \rightarrow Pump power P(z,t) and inversion $x_{inv}(z,t)$ only

$$\begin{split} \frac{\partial x_{\text{inv}}(z,t)}{\partial t} &= \frac{\sigma_{\text{P}} \Gamma}{Shv_{\text{P}}} P(z) [1 - x_{\text{inv}}(z,t)] - \frac{x_{\text{inv}}(z,t)}{\tau} \\ \frac{\partial P(z,t)}{\partial z} &= -\sigma_{\text{P}} \Gamma P(z,t) N(z) [1 - x_{\text{inv}}(z,t)] \end{split}$$

With pump- and radiation-induced degradation

$$\frac{\partial x_{\text{inv}}(z,t)}{\partial t} = \frac{\sigma_{\text{P}} \Gamma}{Shv_{\text{P}}} P(z) [1 - x_{\text{inv}}(z,t)] - \frac{x_{\text{inv}}(z,t)}{\tau}$$

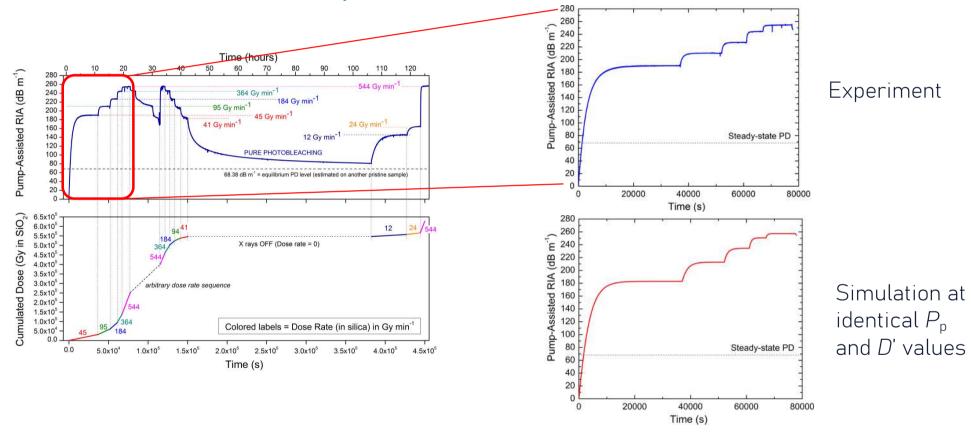
$$x_{\text{inv}}(z,t) \quad \partial n(z,t)$$

$$+ \frac{x_{\text{inv}}(z,t)}{N(z) \left[1 - \frac{n(z,t)}{N(z)}\right]} \frac{\partial n(z,t)}{\partial t}$$

$$\frac{\partial P(z,t)}{\partial z} = -\sigma_{\text{P}} \Gamma P(z,t) N(z) \left[1 - x_{\text{inv}}(z,t)\right] \left[1 - \frac{n(z,t)}{N(z)}\right]$$

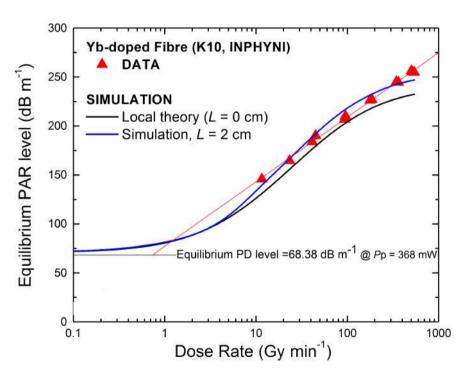
$$-\sigma_{\rm CC} \Gamma P(z,t) h(z,t)$$

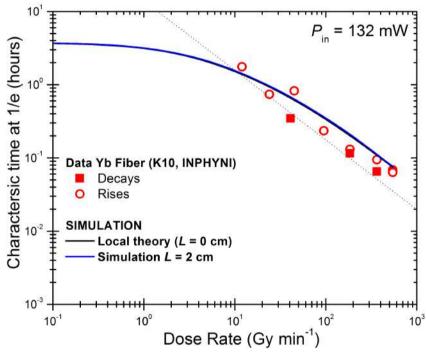
$$\frac{\partial n_{\rm c}(z,t)}{\partial t} = g_0(z) - \delta n_{\rm c}(z,t) N(z) \left[1 - \frac{n(z,t)}{N(z)} \right]$$


$$\frac{\partial n(z,t)}{\partial t} = \delta n_{\rm c}(z,t)N(z)\left[1 - \frac{n(z,t)}{N(z)}\right] + \sigma_{\rm PD}\frac{x_{\rm inv}^4(z,t)}{\tau^3}N(z)^4\left[1 - \frac{n(z,t)}{N(z)}\right]^4H(z)\left[1 - \frac{h(z,t)}{H(z)}\right] - \gamma h_{\rm v}(z,t)n(z,t)$$

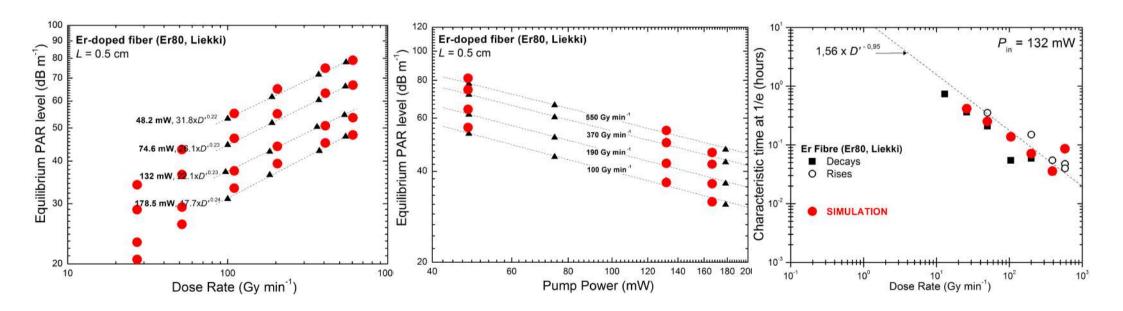
$$\frac{\partial h(z,t)}{\partial t} = \beta h_{\mathrm{v}}(z,t)H(z)\left[1 - \frac{h(z,t)}{H(z)}\right] + \sigma_{\mathrm{PD}}\frac{x_{\mathrm{inv}}^4(z,t)}{\tau^3}N(z)^4\left[1 - \frac{n(z,t)}{N(z)}\right]^4H(z)\left[1 - \frac{h(z,t)}{H(z)}\right] - \sigma_{\mathrm{PB}}\frac{x_{\mathrm{inv}}^2(z,t)}{\tau^2}N(z)^2\left[1 - \frac{n(z,t)}{N(z)}\right]^2N_{\mathrm{v}}h(z,t)$$

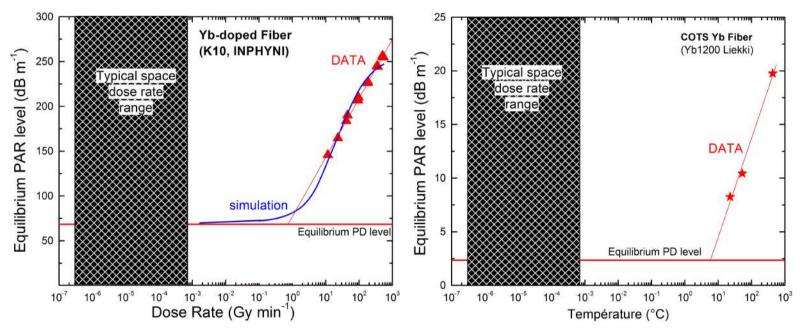
$$\frac{\partial h_{\mathbf{v}}(z,t)}{\partial t} = g_0(z,t) - \beta h_{\mathbf{v}}(z,t)H(z)\left[1 - \frac{h(z,t)}{H(z)}\right] + \sigma_{\mathbf{PB}}\frac{x_{\mathrm{inv}}^2(z,t)}{\tau^2}N(z)^2\left[1 - \frac{n(z,t)}{N(z)}\right]^2N_{\mathbf{v}}h(z,t) - \gamma h_{\mathbf{v}}(z,t)n(z,t)$$




Model validation: Yb-doped fibers

Model validation: Yb-doped fibers


Model validation: Er fibers


Model validation: Er fibers

Simulation: red dots for L = 0.5 cm

Extrapolation to typical space dose rates

Very low dose rates \rightarrow Very slow RIA development \rightarrow Each time RIA exceeds the PD $_{\infty}$ level, the pump has time to bleach back to PD $_{\infty}$ (regulation)...

Pump-assisted RIA cannot exceed PD_{∞} in Yb-doped fibers or the residual loss level in Er-doped fibers (in active conditions: pump ON). But both depend on the local pump power.

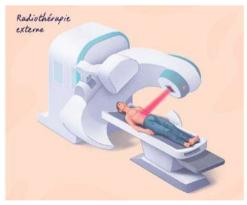
4 • MEDICAL APPLICATIONS

- Low dose levels
- Mainly RIE (radioluminescence)

4 • MEDICAL APPLICATIONS

- Low dose levels
- Mainly RIE (radioluminescence)
- 4A Radiation-therapy and dosimetry
- 4B The promises of « flash » therapy and related needs
- 4C Why silica-based fibers can help?
- 4D Topical example: high-energy proton therapy (HEPT)

4A – RADIATION-THERAPY (RT) AND DOSIMETRY What is RT?


- A modality included in more than 50% of the treatments given to cancer patients
- Use of ionizing radiation to kill malignant cells (tumors)

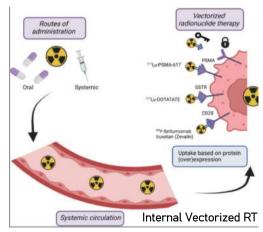
What is RT?

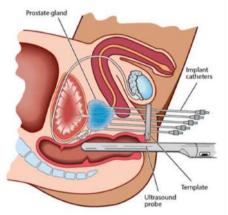
EXTERNAL

- High-energy X rays (> 6 MV)
- Protons (65-230 MeV), less common

~120 RT Centers in France use X rays...

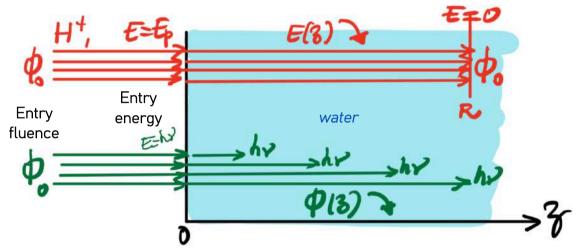
... but only 4 cyclotrons: 2 in Nice + 1 Orsay + 1 Caen




What is RT?

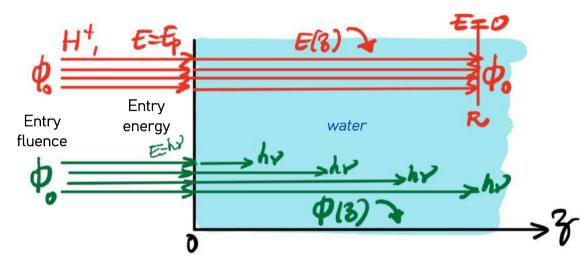
INTERNAL (low energy gamma rays from radionuclides)

- Brachyterapy
- Internal vectorized radiotherapy



Prostatic brachytherapy

Differences between photons and protons

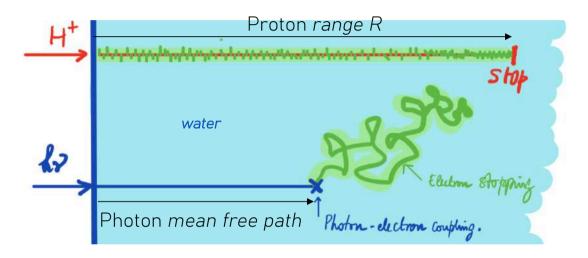


Proton stopping is deterministic

- Protons are stopped (slowed down) by a huge number of small energy transfers, mainly to electrons
- Their fluence remains roughly constant until they come to complete stop

Differences between photons and protons

Proton stopping is deterministic

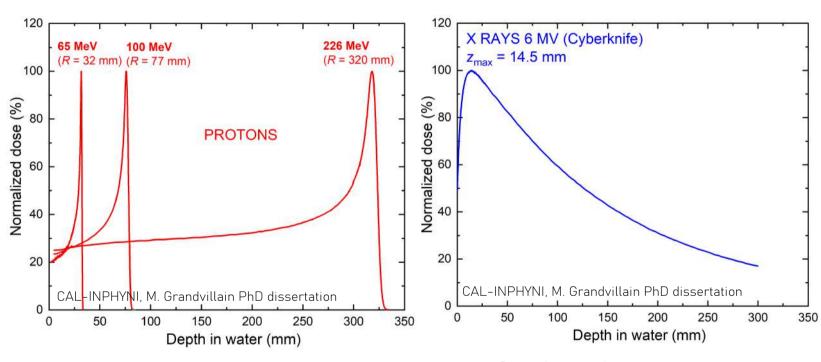

- Protons are stopped (slowed down) by a huge number of small energy transfers, mainly to electrons
- Their fluence remains roughly constant until they come to complete stop

Photon <u>attenuation</u> is stochastic

- Photons can travel without interacting with the medium. They disappear upon interaction.
- The energy of the primary beam remains constant, but its fluence decreases.

Differences between photons and protons

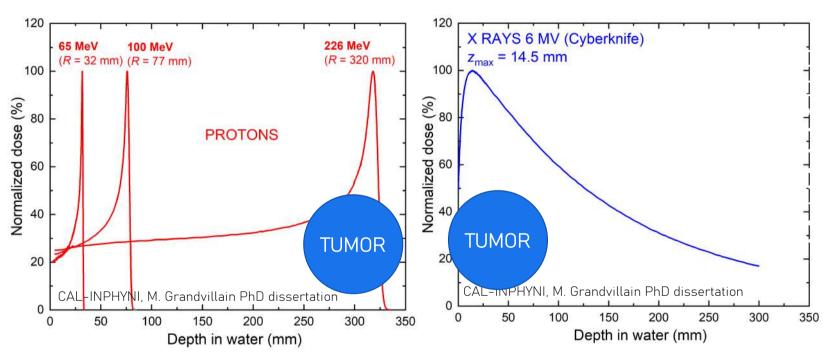
Huge number of proton-electron interactions


- On average a few hundreds eV transferred to electrons at each interaction
- Electrons are stopped within 10-20 nm. Energy deposited right next to the interaction point
 → Local dose absorption

Only one photon-electron coupling

- High transferred energy: 80 to 100% of $h\nu$, of the order of 1 MeV for high energy X rays
- Long electron range (cm): **energy** deposited far away from the coupling point...
 - → Distant dose absorption

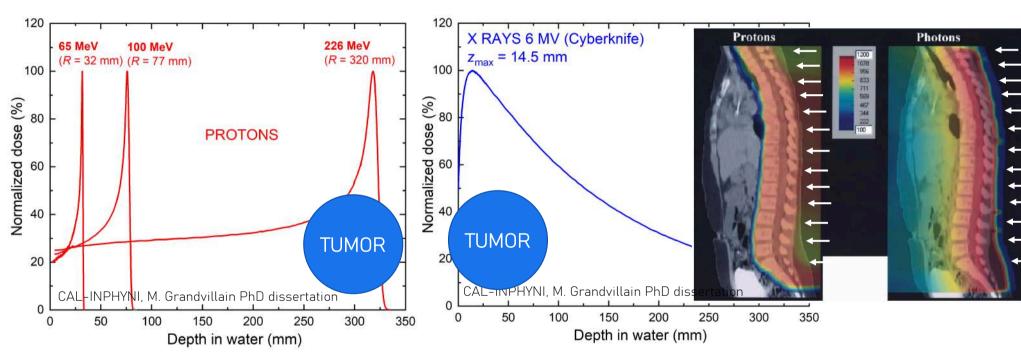
Consequences on depth-dose profiles



- Sharp maximum = BRAGG PEAK
- Virtually **no dose at depth** > R

 Significant doses absorbed before and after the maximum

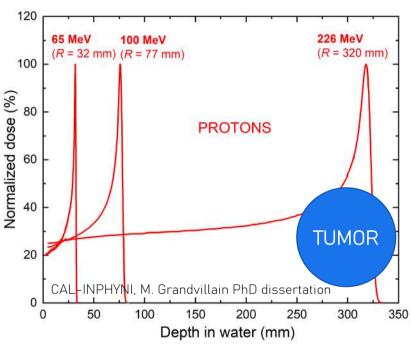
Consequences on depth-dose profiles



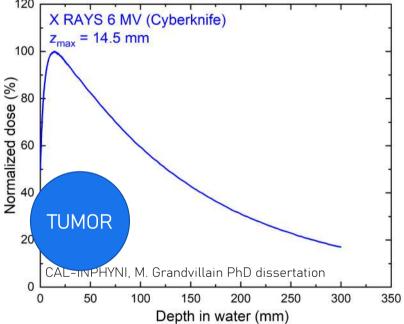
- Sharp maximum = BRAGG PEAK
- Virtually **no dose at depth** > R

 Significant doses absorbed before and after the maximum

Consequences on depth-dose profiles

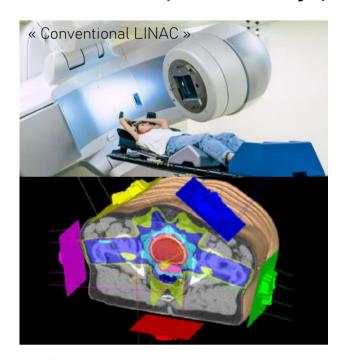


- Sharp maximum = BRAGG PEAK
- Virtually **no dose at depth** > R

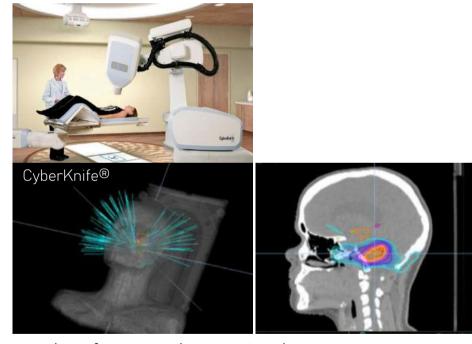

 Significant doses absorbed before and after the maximum

Consequences on depth-dose profiles

- Sharp maximum = BRAGG PEAK
- Virtually **no dose at depth** > R


 Significant doses absorbed before and after the maximum

- Impossible to target only the tumor
- Surrounding healthy tissues receive dose (side effects)

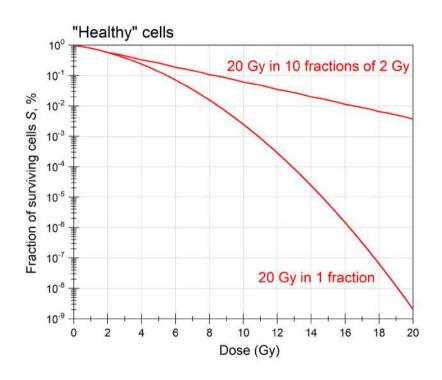


How to limit the dose at healthy tissues and side effects?

1 – Use of multiple « entry points » (multiple converging beams)

A few coplanar beams....

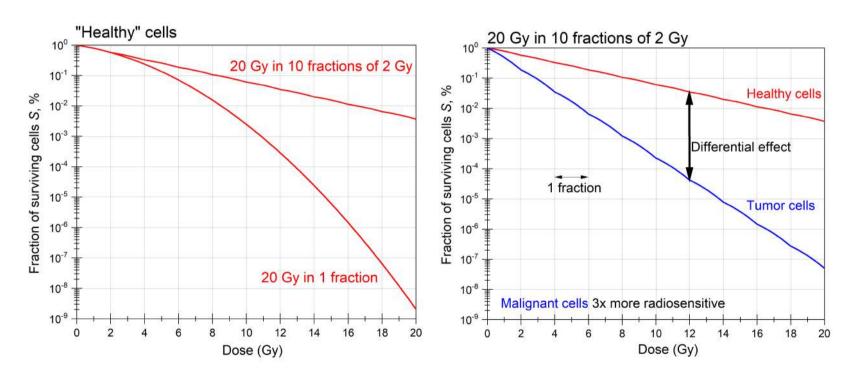
...or a lot of non-coplanar microbeams


How to limit the dose at healthy tissues and side effects?

- 2 Treatment (dose) delivered in a fractionated manner
- Typical therapeutic dose: 60 Gy to the « target volume »
- Delivered into 30 fractions of 2 Gy each.
- 1 fraction per day during several (6) weeks
- Source of fatigue for the patient
- Socioeconomic costs (medical transport, number of sessions...)

How to limit the dose at healthy tissues and side effects?

2 – Treatment (dose) delivered in a fractionated manner



But tumor cells are more radio-sensitive (high mitotic activity)

How to limit the dose at healthy tissues and side effects?

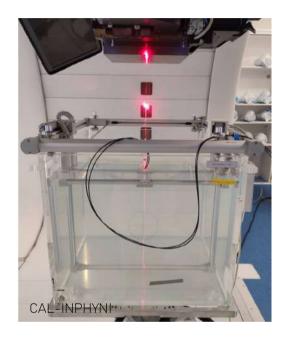
2 – Treatment (dose) delivered in a fractionated manner

How to limit the dose at healthy tissues and side effects?

2 – Treatment (dose) delivered in a fractionated manner

If improved irradiation techniques allow:

- An enhanced targeting of the tumor (better sparing of surrounding tissues)
- Less side effects on healthy tissues


Treatments can be HYPOFRACTIONATED (less fractions, increased per-fraction dose) 'Perfect' targeting > 1 fraction = « radiosurgery »

Dosimetry for Quality Assurance (QA)

Need to control:

• Beams to check proton range R, photon z_{\max} , dose per MU... in water tanks

Dosimetry for Quality Assurance (QA)

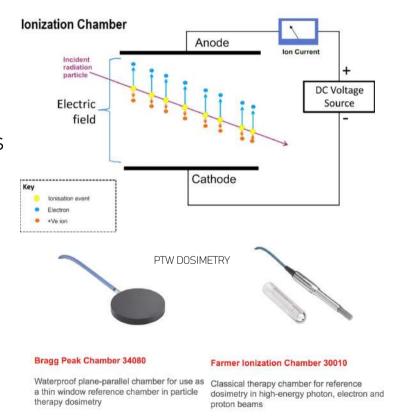
Need to control:

- Beams to check proton range R, photon z_{\max} , dose per MU... in water tanks
- Treatment plans, checked in « phantoms » to make sure that the treatment plan delivers the planned dose at the right place in the patient

Dosimetry for Quality Assurance (QA)

Need to control:

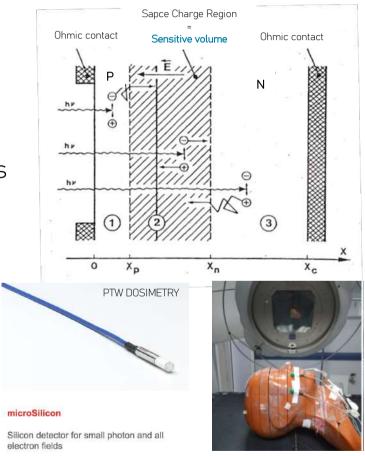
- Beams to check proton range R, photon z_{max} , dose per MU... in water tanks
- Treatment plans, checked in « phantoms »
 to make sure that the treatment plan delivers the
 planned dose at the right place in the patient
- Treatment on patient (in-vivo dosimetry)
 To check the dose actually given to the patient during one fraction (dosimeter at patient's skin)



Dosimetry for Quality Assurance (QA)

Usual dosimeters

- Ion chambers are calibrated by reference institutes
 - Active dosimeters (realtime dosimetry).
 - o Serve as reference dosimeter to calibrate others
 - o Used for beam controls



Dosimetry for Quality Assurance (QA)

Usual dosimeters

- **Ion chambers** are calibrated by reference institutes
 - Active dosimeters (realtime dosimetry).
 - o Serve as reference dosimeter to calibrate others
 - o Used for beam controls
- Semi-conducting diodes
 - Active dosimeters (realtime dosimetry)
 - o A kind of solid equivalent of ion chambers
 - o Used for beam, plans and patient controls

Dosimetry for Quality Assurance (QA)

Usual dosimeters

- Ion chambers are calibrated by reference institutes
 - Active dosimeters (realtime dosimetry).
 - o Serve as reference dosimeter to calibrate others
 - o Used for beam controls
- Semi-conducting diodes
 - Active dosimeters (realtime dosimetry)
 - o A kind of solid equivalent of ion chambers
 - o Used for beam, plans and patient controls
- Less common modalities using luminescent detectors
 - TLD /OSL (passive), RL (active)

« Flash » therapy?

A radically new approach to external RT treatments

- So-called « flash effect » first reported by Favaudon et al. in 2014 (V. Favaudon et al., Sci. Transl. Med. 6, 3008973, 2014)
- Use « short pulses » (< 500 ms) at ultra-high dose rate (UHDR)

Benefits:

Seems to allow better sparing of normal tissues while maintaining tumor control

	Dose rate	Per-fraction dose	Number of fractions
Conventional RT	Typ. 0.03 Gy s ⁻¹	Typ. 2 Gy (in 60 s)	Тур. 30
Flash RT	40 - 200 Gy s ⁻¹	8-20 Gy ?	3 to 5 ? (hypofractionated)

Hypofractionation → great benefits to patients but QA controls must be flawless

State of affairs

Feasible and promising

Early human studies showing that FLASH is feasible and safe. But very small cohorts for selected indications (e.g., superficial lesions, bone metastases).

Not yet standard of care

Widespread clinical adoption requires larger trials, robust dosimetry/QA

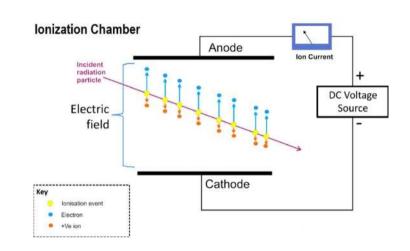
Mechanisms unresolved

Multiple plausible mechanisms exist (oxygen depletion among the leading hypotheses), but none fully explains all observations *Still an active area of basic research*.

Challenges

- Dosimetry
 Reliable QA at UHDR remains complex (detector saturation).
- Beam delivery: Most clinical linacs not designed for FLASH; limited to superficial/transmission setups.
- Reproducibility: Tissue-dependent, dose-dependent; not all normal tissues show sparing.
- Clinical evidence: Current human data limited (small N, short follow-up). No randomized phase III yet.

.


Challenge in dosimetry

Usual state-of-the-art dosimeters (ICs, diodes):

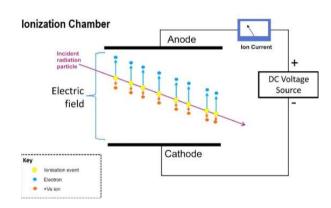
lonisation → e-/ion or e-/h+ pairs

→ drift under electric field (conduction)

→ current in the polarization circuit.

Steady-state current proportionnal to the absorbed dose rate under « normal voltage » (200–300 V)

- Sufficiently high to collect all created pairs (they must escape recomb.)
- Sufficiently low **not to induce electron multiplication** or cascade



Challenge in dosimetry

Such dosimeters are not suited for operation under high dose rates!

Too much pairs (e-/ion or e-/h+) created at once

- Recombination favored
 - → Sensitivity loss
- Space-charge limited current
 - → Electric field induced by free charges may screen the applied field
 - → Reduced effective drift velocity
 - → Sensitivity loss
- > Need for increasing polarization but detector then operated out of specifications

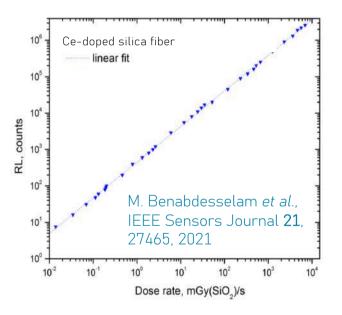
Needs

Novel dosimeters that maintain their sensibility at high dose rates

→ Luminescent dosimeters

Active, realtime dosimeters to resolve beam time structure

→ Metrology based on Radioluminescence (RL)


Needs

Novel dosimeters that maintain their sensibility at high dose rates

→ Luminescent dosimeters

Active, realtime dosimeters to resolve beam time structure

- → Metrology based on Radioluminescence (RL)
- Steady-state RL intensity is proportional to the particle fluence, hence to dose rate at constant energy
- No theoretical limitations.
 Very robust property (no saturation effect)

4C - WHY SILICA-BASED FIBERS CAN HELP?

...instead of plastic fibers?

	Plastic fibers	Silica fibers
<u> </u>	 Water equivalent (Z = 6.5 for PMMA, 5.7 for PE) Organic scintillation is rapid 	
)	Thick (1 mm in diam.), rigidLimited emission range (mainly UV-blue)Scintillation quenching	

Water: Z = 7.42Silicon: 7 = 14

Lot of « plastic fiber dosimeters » in fact consist in inorganic scintillator attached to PMMA fibers...

Z can be 30+!!

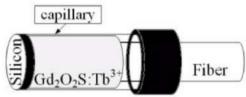
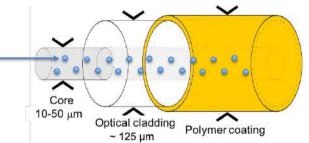


Fig. 1 (a) The schematic diagram of sensor

Fig. 1 (b) The picture of the entity of the sensing element

4C - WHY SILICA-BASED FIBERS CAN HELP?

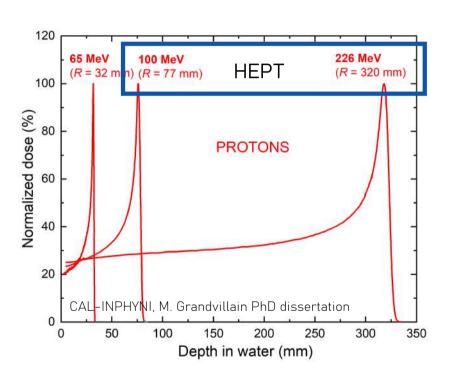
...instead of plastic fibers?


- Scintillation quenching

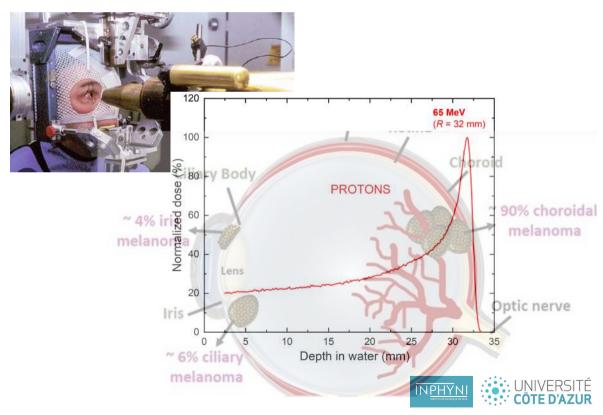
	Plastic fibers	Silica fibers
	 Water equivalent (Z = 6.5 for PMMA, 5.7 for PE) Organic scintillation is rapid 	 Nearly water equivalent (Z = 10) Thin and flexible, « bendable » Tunable emission wavelength (according to dopant) The fiber itself is the scintillator, possibly over very long length
35	Thick (1 mm in diam.), rigidLimited emission range (mainly UV-blue)	Inorganic scintillation is « slow »Scintillation quenching

Water: Z = 7.42 Silicon: **Z = 14**

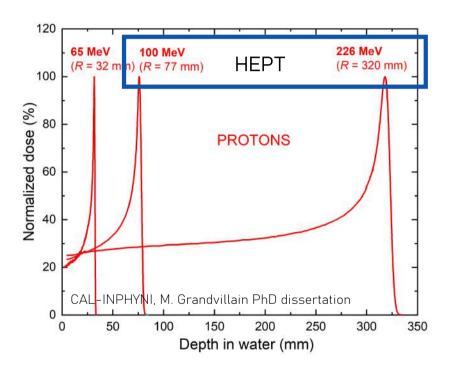
In-core luminescent ions Cu⁺, Gd³⁺,Tb³⁺, Ce³⁺,Sm³⁺,... or Ge


Silica fibers offer opportunity of:

- In-vivo dosimetry
 - o at patient's skin
 - o In brachyterapy catheter
- Distributed sensing


Franck MADY - October 8, 2025 - Giens

4D – TOPICAL EXAMPLE: HIGH ENERGY PROTONTHERAPY What is HEPT?


65 MeV : protons penetrate up to 3,2 cm in soft tissue

→ Can only treat ocular (uveal) melanoma

Franck MADY - October 8, 2025 - Giens

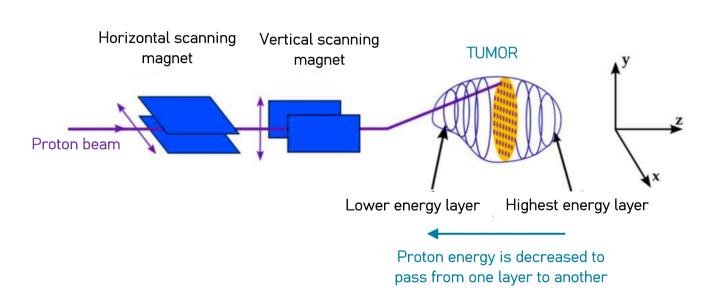
What is HEPT?

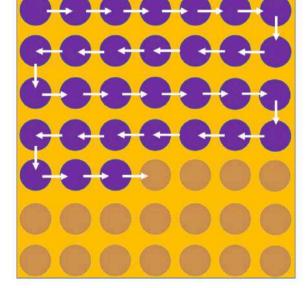
65 MeV: protons penetrate up to 3,2 cm in soft tissue

→ Can only treat ocular (uveal) melanoma

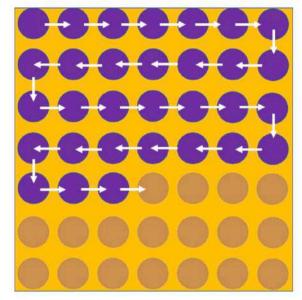
Energy up to 226 MeV, range = 32 cm in soft tissue

- → Protons can pass trough human body
- → Can reach all tumors.


Superconductor SynchroCyclotron (S2C2)

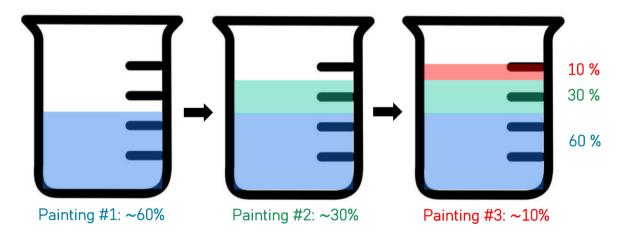


« Pencil Beam Scanning » (PBS) is used to irradiate the tumor with mm-size spots, layer by layer



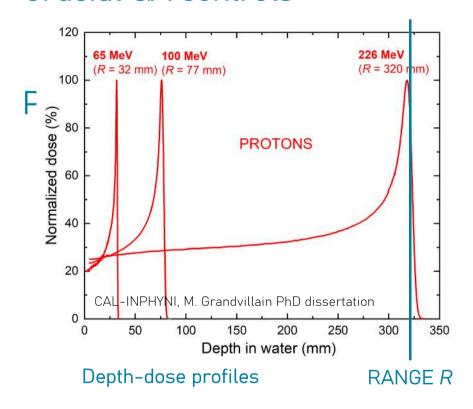
Transverse scanning of a layer

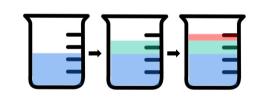
CAL-INPHYNI, M. Grandvillain PhD dissertation

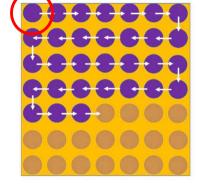


« Pencil Beam Scanning » (PBS) is used to irradiate the tumor with mm-size spots, layer by layer

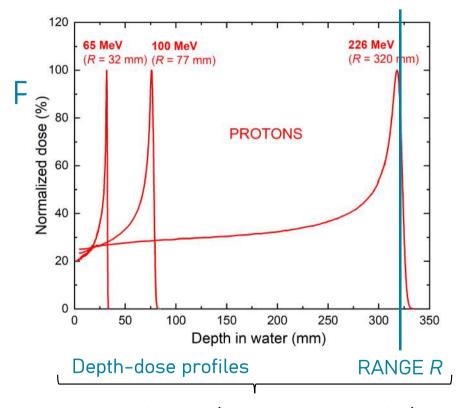
Transverse scanning of a layer

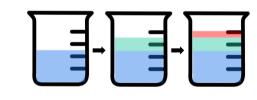

On each layer, the planned proton fluence is **delivered in three** successive scanning (« paintings ») for better accuracy




« Blind golfer algorithm » is used to adjust each painting

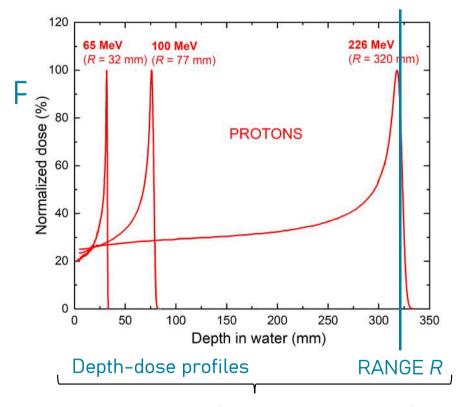
Crucial QA controls



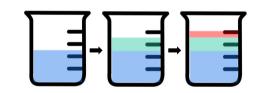

Painting sequence

Spot size

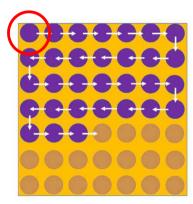
Crucial QA controls


Painting sequence

Spot size

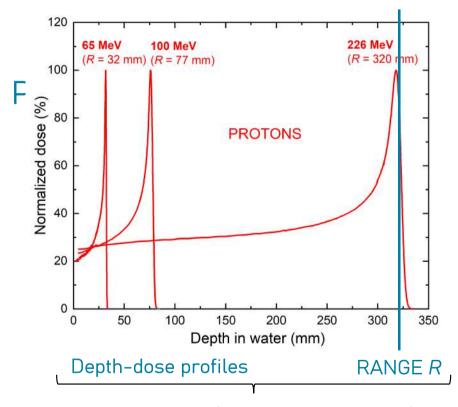

Already done (ion chambers, diodes)

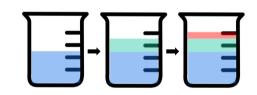
Crucial QA controls



Already done (ion chambers, diodes)

Painting sequence

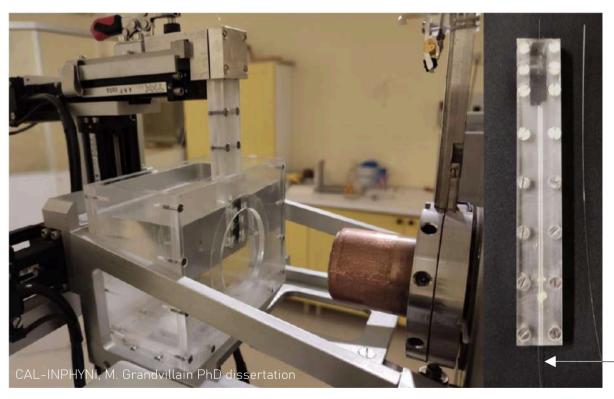

Not feasible with state-ofthe-art sensors

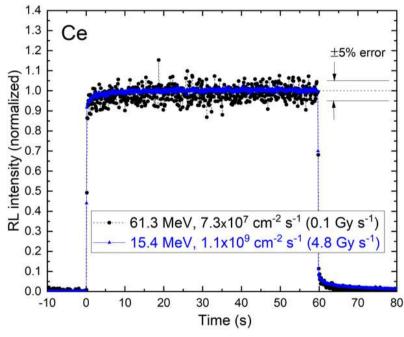

Spot size

Crucial QA controls

Already done (ion chambers, diodes)

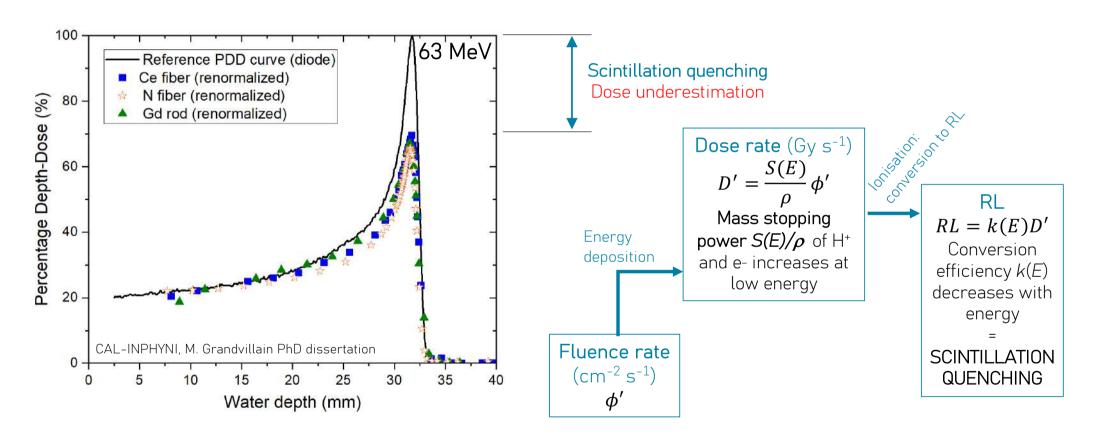
Not feasible with state-ofthe-art sensors



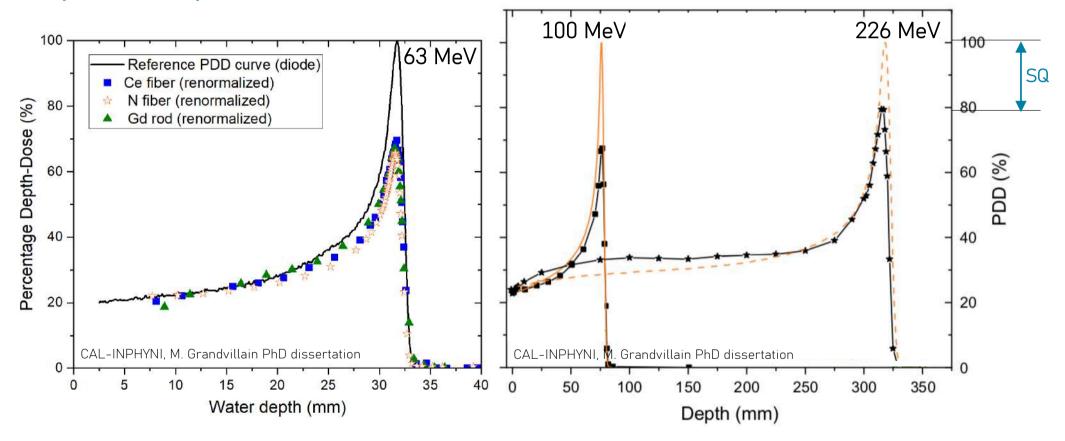

Already done (Lynx®), but at water surface only

Franck MADY – October 8, 2025 – Giens

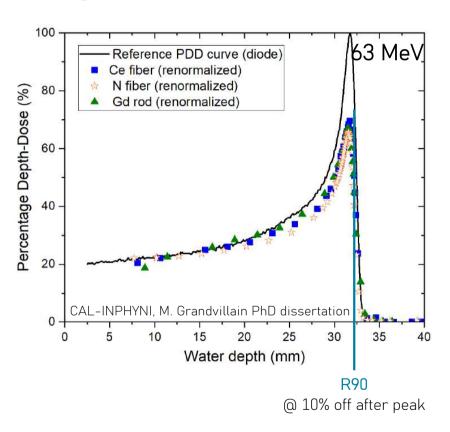
Depth-dose profiles



Radioluminescent fiber probe (nitogen doped), 1 cm long



Depth-dose profiles

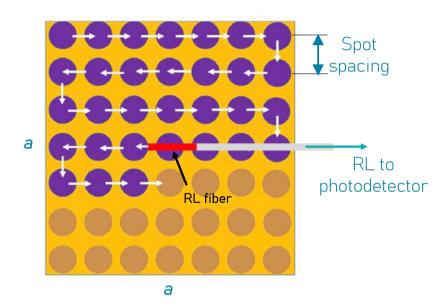


Depth-dose profiles

Range

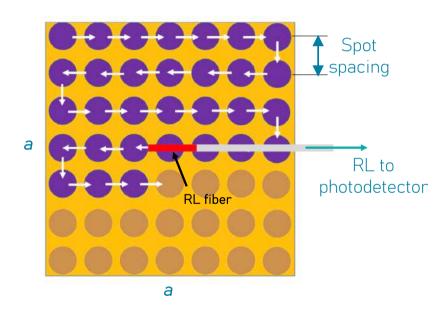
R90 values from silica-fibers related PDD curves (mm)

	Reference	N-doped	Ce-doped	Gd-doped
63 MeV	32.05	31.9	32.02	31.9
100 MeV	77	77.3	-	-
226 MeV	320	319	-	-


Relative deviation from reference

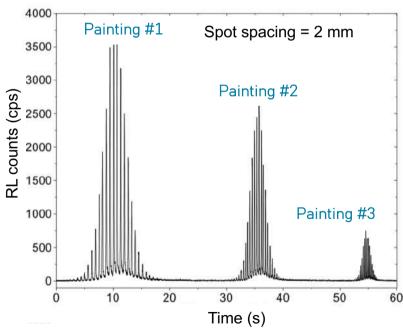
	Reference	N-doped	Ce-doped	Gd-doped
63 MeV	0	-0.47 %	-0.09 %	-0.47 %
100 MeV	0	+0.39 %	-	-
226 MeV	0	-0.31 %	-	-

Very good range estimate across the whole range of clinical energies, despite SQ

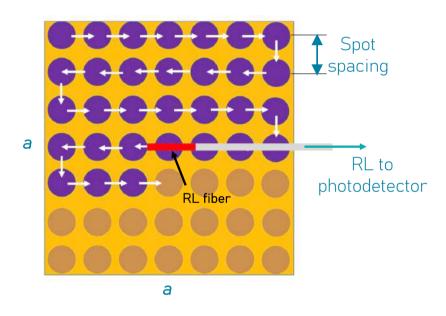


In QA control conditions (not real patient's plan)

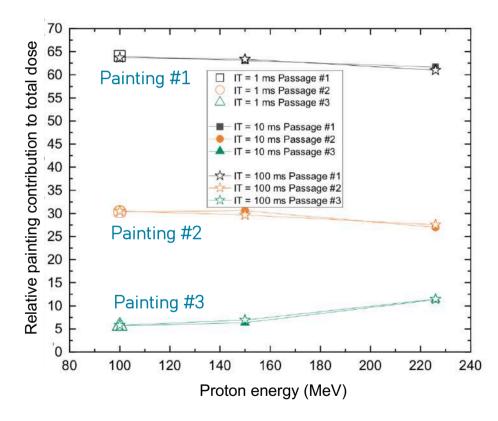
- Square irradiation field, side length a = 10.2 cm
- 1-cm long RL silica fiber (N-doped), centered
- Scanning with spot spacing of 2, 4, 6 or 8 mm

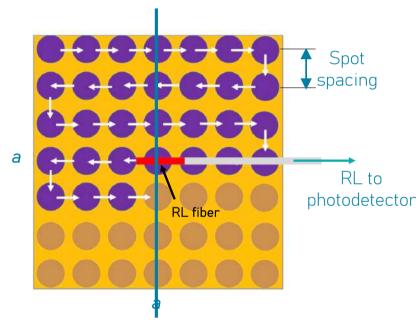


CAL-INPHYNI. M. Grandvillain PhD dissertation

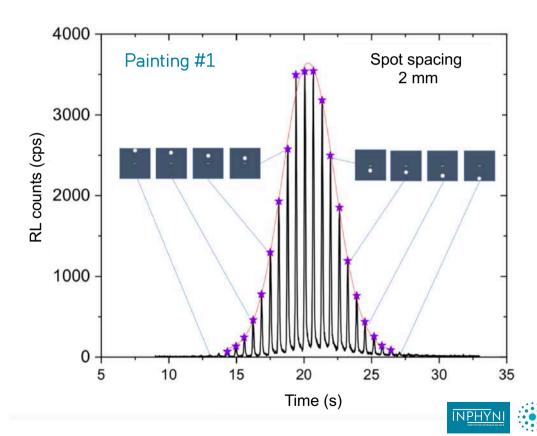

In QA control conditions (not real patient's plan)

- Square irradiation field, side length a = 10.2 cm
- 1-cm long RL silica fiber (N-doped), centered
- Scanning with spot spacing of 2, 4, 6 or 8 mm

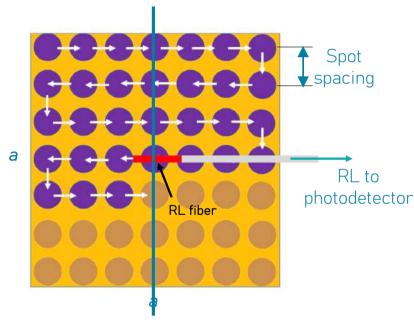



CAL-INPHYNI, M. Grandvillain PhD dissertation

Control of the relative dose given by each painting

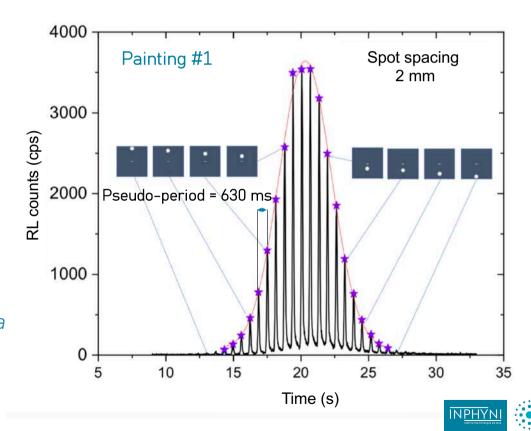


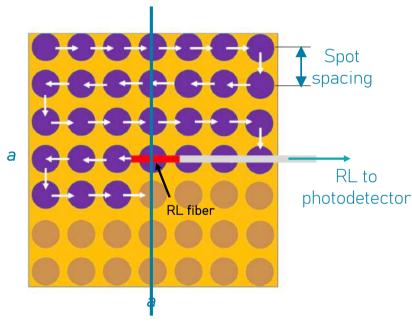
Painting sequence



CAL-INPHYNI, M. Grandvillain PhD dissertation

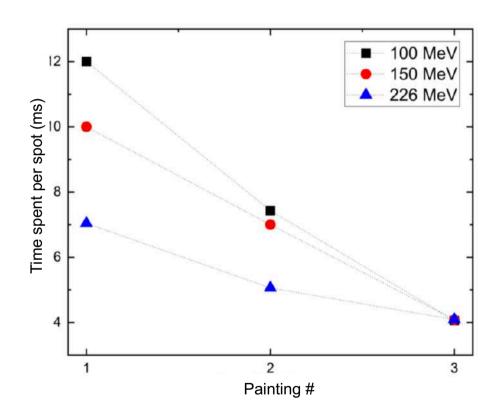
Sub-peaks pass **relative maxima** each time the spot intercepts the **transverse axis** of the fiber probe


Painting sequence

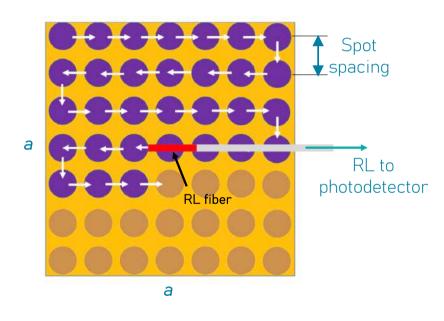

Pseudo-period between 2 subpeaks
= time for the spot to travel the distance a

Control of the scanning speed

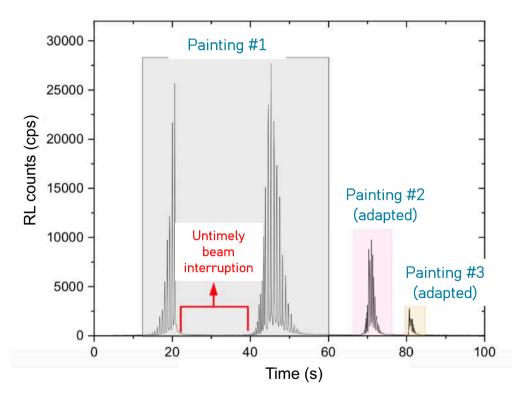
Sub-peaks pass **relative maxima** each time the spot intercepts the **transverse axis** of the fiber probe



Painting sequence


Pseudo-period between 2 subpeaks
= time for the spot to travel the distance a

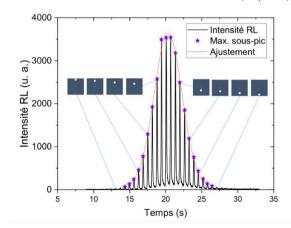
Control of the scanning speed



CAL-INPHYNI, M. Grandvillain PhD dissertation

In real treatment conditions: **detection of beam interruption** and control of the **dose delivery adaptation**

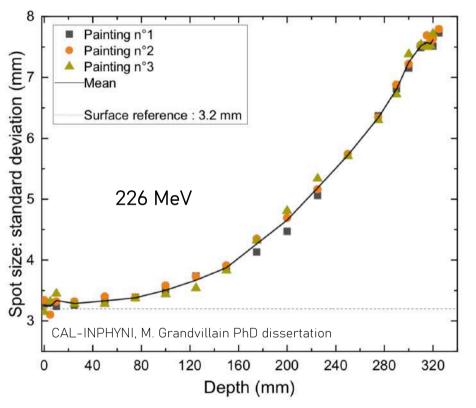
Spot size σ


Spot fluence is spatially distributed following a gaussian distribution

• If spot center $@(x_0, y_0)$, fluence @(x, y) is

$$\Phi(x,y) = \Phi_0 \times \exp\left(-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}\right)$$

• Fluence on the fiber probe at subpeak max.


$$\overline{\Phi}_{\text{subpeak}}\left(y_{0}\right) = \frac{\Phi_{0}\sigma^{2}\pi}{Ld} \times \operatorname{erf}\left(\frac{L}{2\sqrt{2}\sigma}\right) \times \left[\operatorname{erf}\left(\frac{a+d-2y_{0}}{2\sqrt{2}\sigma}\right) - \operatorname{erf}\left(\frac{a-d-2y_{0}}{2\sqrt{2}\sigma}\right)\right]$$

Time → Space coordinate:

$$y_{0}(t) = \frac{a}{2} - \frac{p}{T}(t - t_{\text{max}}).$$

Spot size σ

- In-depth monitoring of spot size with a small fiber (1cm x 125 microns)
- Much better

 (and much cheaper)
 that the « big » LYNX
 that cannot be
 immersed in water!

 All innovative controls (relative painting contributions, scanning speed, spot size) are made during the measurement of the depthdose profile ALL IN ONE MEASUREMENT!

- Silica fibers, used as RL dosimeters, are « flash ready»
- They offer important new opportunities to achieve enhanced QA controls in innovative, highly-precise treatment modalities (as HEPT)
- Other important opportunities
- for brachyterapy (in-vivo dosimetry, with fibers in catheters)
- for external RT: in-vivo 2D dose mapping
- for internal vectorized RT (in vivo dosimetry)
- Next important step: distributed but « cheap » sensors (i.e. not based on OFDR).

