

1

Ecole de Fréjus DU VERRE AU LIQUIDE : MESURES DES PROPRIETES ET ETUDES STRUCTURALES A HAUTE TEMPERATURE

Verres métalliques

Yannick Champion

Institut de Chimie et des Matériaux Paris-Est CNRS, Thiais

Alliages métalliques « communs »

- Solution solide homogène
- Solidification précipitation
- Dissolution précipitation

Plaquettes nanométriques Al₃Zr, Précipités Al₂Cu JP Couzinié, I Guillot (ICMPE)

Frittage en phase liquide du W : réaction W+FeNi → re-précipitation du W+phase γ (FeNiW)

M. Laurent-Brocq (ICMPE) R. Cury (PTA)

- Contrôle de la microstructure et de la chimie par la thermodynamique et la diffusion.
- Phases cristallines → dislocation, lacune atomique (diffusion), phonon
 ...

Plan de l'exposé

- Très bref rappel sur la germination homogène
- Formation des alliages métalliques vitreux ou amorphes
 - Aspects thermodynamique et cinétique
 - Structure de l'alliage amorphe
 - o Critères de formation et élaboration
- Quelques propriétés physiques (thermiques, électriques, magnétiques, mécanique)
- Applications et potentiels

Très bref rappel sur la germination homogène

Taux de germination

Taux de germination en fonction de la force motrice et de la température

Taux de germination en fonction de la température

Diagramme Temps-température-transformation

Alliages métalliques amorphes

Aspects thermodynamiques et cinétiques

Variation volumique ou enthalpique

Evolution de la viscosité avec la température Viscosité et nature de la T_g

15

Viscosité, connection thermodynamique et cinétique

Temps de relaxation du verre $\tau = \frac{\eta}{E}$ $\eta = \eta_0 \exp\left(\frac{E_a}{kT}\right)$ E_a énergie d'activation

Relation de Adam-Gibbs : décrit la relaxation des verres dans le domaine fortement surfondu, A et B sont des constantes, S_c est l'entropie de configuration

$$\tau = A \exp\left(\frac{B}{TS_c}\right)$$

Force du verre, stabilité dans le domaine surfondu

$$S_c = \frac{B}{D} \left(\frac{1}{T_0} - \frac{1}{T} \right)$$

Relation de Vogel-Tammann-Fulcher D, T_0 sont des constantes

$$\eta = \eta_0 \exp\left(\frac{DT_0}{T - T_0}\right)$$

D caractérise la force du verre au sens de Angell (J. non cryst. Sol. 102 (1988) 205-221.

D élevé = verre fort : la viscosité varie Peu avec la température. (ex. silice D=150)

Le verre métallique est intermédiaire

R. Busch Acta Mat. *46* (1998) 4725-4732.

Structure de l'alliage amorphe et formabilité

Diagramme de diffraction RX

Base FeCoZrBCu, MET HR (D'après Inoue)

Un verre métallique n'est pas une distribution aléatoire en 3D d'atomes.

Fonctions de distribution radiale

Polyèdres de Platon (P1-P5) et d'Archimède (A1-A13) Seuls le cube (P5) et l'octaèdre tronqué (A13) peuvent paver l'espace. F.C. Frank, Proc. Roy. Soc. London Ser. A 215 43 (1952) Barrière de germination dans le liquide surfondu provient d'une structuration du liquide en clusters icosaédriques, incompatibles avec un arrangement périodique à longue distance (Torquato, Nature 460 (2009) 876).

Simulé par J.D. Bernal, Nature 183 (1959) 141-147, Nature 185 (1960)68-70.

Description: distribution aléatoire de clusters quasi-équivalents issus de l'état liquide surfondu.

Ni₈₁B₁₉ simulation MD et comparaison avec des mesures aux synchrotron *Sheng et al, Nature 2006*

Les auteurs montrent que l'ajout d'aluminium augmente la proportion d'icosaèdres réguliers.

Ce qui expliquerait la stabilité du verre Zr-Cu (Al) observée expérimentalement pour Al jusqu'à 10% atomique.

Zr-Cu-Al simulation DM, comparaison avec des observations au synchrotron. Cheng et al, PRL 2009

C.A. Angell, MRS BULLETIN 33 (2008) 544

Y.Q. Cheng, E. Ma/ Progress in Materials Science 56 (2011) 379–473

Critères de formation et élaboration

Dissipation thermique vs mobilité atomique

Compétition entre dissipation de la chaleur $t \approx x^2/\alpha$ et diffusion atomic $\tau \approx \lambda^2/D$

$$x < \lambda \sqrt{\alpha/D}$$

Solidification du verre : taux de refroidissement

Taux de refroidissement

$$R = \frac{dT}{dt} \approx \frac{T_f - T_g}{\tau}$$

 T_f liquidus, T_g transition vitreuse

Temps caractéristique de la diffusion thermique

$$\tau \approx \frac{r^2}{\alpha}$$

 α , diffusivité thermique

$$R = \frac{\alpha (T_{\rm f} - T_g)}{r_c^2} = \frac{\alpha T_{\rm f} (1 - T_g / T_{\rm f})}{r_c^2} \approx \frac{15}{r_c^2}$$

avec : $\alpha = 3 \times 10^{-2} \,{\rm cm}^2 \,{\rm s}^{-1}, T_{\rm f} \approx 883^\circ C \,{\rm et} \, T_g \approx 390^\circ C$

Verre base ZrCuAl

Echelle de température

Pour former le verre, le taux de refroidissement R>R_c taux de refroidissement critique.

Exemple d'un verre base Zr

Capacité à l'amorphisation GFA : glass forming ability

$$R_c \propto T_x - T_g \approx 55 \mathrm{K}$$

 $R_c \propto \frac{T_g}{T_m} \approx 0,60$
 $R_c \approx 700 - 1000 \mathrm{K.s^{-1}}$
 $r_c \approx \sqrt{\frac{15}{R_c}} \approx 0.1 - 0.15 \mathrm{cm}$

 $e \approx 0.2 - 0.3 \,\mathrm{cm}$

Etude expérimentale de la capacité à l'amorphisation

Alliages base Zr

Xing et al, MSEA, 1996

Verres métalliques massifs : forte capacité à l'amorphisation.

Améliorer le GFA : réduire le taux de germination

Régles empiriques

- Au moins 3 atomes (frustration)
- Difference de rayon atomique > 12%.
- Principaux atomes ont une enthalpie de mélange négative
- Eutectique "profond"

Exemples de modes de preparation de laboratoire : solidification

... pas pour le verre Métallique

formabilité post élaboration dans Le domaine surfondu « stable »

Vidéo 1 : production industrielle de rubans

Vidéo 2 : fusion en lévitation et trempe

Poudre de verre métallique Atomisation sous gaz

Approche du frittage

- Frittage flash (spark plasma sintering: SPS)
- Chauffage rapide par effet Joule
- Passage du courant dans la poudre
- Pulses de courant

Pression uniaxiale jusqu'à 500 MPa à 500°C

Outils en WC-Co

Repartition du courant

Approche des micro-mécanismes

La dévitrification informe sur les états thermiques en foncion du temps

Comportement mécanique en compression

Composites à base de verre métallique

Tx = 720 K (447°C) bonne stabilité dans le domaine surfondu

Tg = 660 K (387°C) frittage sous faible pression

Mélange avec de la poudre d'aluminium

Similaire :

Temperature de frittage Module élastique 70-80 GPa

Different :

Résistance mécanique :1700-80 MPa "Fragile"- ductile

10 % volume fraction Al

90 % volume fraction Al

Chauffage par courant électrique homogène Décharges capacitives.

Georg Kaltenboeck, et al SCIENTIFIC REPORTS 4 : 6441, DOI: 10.1038/srep06441 (2014)

Quelques propriétés physiques

Propriétés thermiques et électriques

Le désordre atomique produit de la diffusion des phonons et des électrons :

- Diffusivité et conductivité thermiques à peu près deux fois plus faibles que les alliages cristallins.
- Résistivité électrique plus élevée de deux à trois ordres de grandeurs

Propriétés magnétiques

Anisotropie magnéto-cristalline aléatoires

Fe₃₉ Ni₃₉Mo₄B₁₂Si₆

Comportement mécanique

Dubach et al, Scripta mat. 60 (2009) 567.

Déformation Hétérogène T < 0,7Tg - T < Tg

Déformation Homogène T > 0,7 Tg - T > Tg

Nieh et al, Scripta mat. 54 (2006) 387.

Résistance proche de la résistance théorique à rupture Grande déformation élastique (2%)

Salimon et al MSEA 2004

Volume libre et comportement en rupture

Ductile

Zr-based

Mg-based

Puech et al AEM 2007

Material	ρ (g/cm ³)	B (GPa)	μ (GPa)	E (GPa)	ν	μ/B	$K_{\rm c}~({\rm MPa}{ m m}^{1/2})$	$G_{\rm c}~({\rm kJ/m^2})$
Fused silica	2.203	36.4	31.3	72.9	0.166	0.858	0.5	0.003
Window glass	2.421	38.8	27.7	67.2	0.211	0.716	0.2	0.004
Toughened glass	2.556	61.9	34.4	87.0	0.266	0.555	0.5	0.003
Mg65Cu25Tb10	3.979	44.71	19.6	51.3	0.309	0.439	2	0.07
Ce70Al100Ni10Cu10	6.67	27	11.5	30.3	0.313	0.427	10	3
Fe ₅₀ Mn ₁₀ Mo ₁₄ Cr ₄ C ₁₆ B ₆		180	76.1	200.0	0.314	0.423	2	0.02
Cu60Zr20Hf10Ti10	8.315	128.2	36.9	101.1	0.369	0.288	67	38
Zr ₅₇ Nb ₅ Cu _{15.4} Ni _{12.6} Al ₁₀	6.69	107.7	32.0	87.3	0.365	0.297	27	7
Pd _{77.5} Cu ₆ Si _{16.5}		167	31.5	88.8	0.41	0.189	51	35
		175	32.9	92.9	0.41	0.188	29	61
		180	34.4	93.6	0.41	0.191	67	33
		164	30.1	85.0	0.41	0.184	50	23
		170	31.9	89.9	0.41	0.188	50	24
Zr57Ti5Cu20Ni8Al10	6.52	99.2	30.1	82.0	0.362	0.303	80	68
Zr41Ti14Cu12.5Ni10Be22.5	6.12	114.7	37.4	101.3	0.353	0.324	86	72
Zr ₄₁ Ti ₁₄ Cu _{12.5} Ni ₁₀ Be _{22.5}	6.12	114.7	37.4	101.3	0.341	0.324	86	74
Annealed 0.75 h @ 623 K		114	37.5	101.6	0.351	0.329	68	40
Annealed 1.5 h @ 623 K		114	37.5	101.6	0.351	0.329	42.5	16
Annealed 3 h @ 623 K		114.4	38.8	107.5	0.347	0.339	27	6
Annealed 6 h @ 623 K		114.4	42.1	111.4	0.336	0.368	32	8
Annealed 12h @ 623K		115	43.2	113.3	0.333	0.376	9	0.6
Annealed 24 h @ 623 K	6.192	118.6	48.8	128.7	0.319	0.411	8	0.4
$Fe_{80}P_{13}C_7$		228.5	49.0	137.3	0.4	0.214	77	60
		207	44.3	124.0	0.4	0.214		110
Pt57.5Cu14.7Ni5.3P22.5				94.8	0.42	0.167	79	80
Pt _{57.5} Cu _{14.7} Ni _{5.3} P _{22.5}				94.8	0.42	0.167	84	90

Un module élastique E plus élevé donne une plus faible ténacité

In Lewandowski et al, Phil mag. 2005

Description statistique : distribution aléatoire d'atomes et de volume libre

Modèle d'Argon (Acta Met. 1979) : shear transformation zone (STZ) contrôle la formation des bandes de cisaillement

Un modèle unique décrivant la déformation hétérogène et homogène unique

Champion et Blétry, Techniques de l'ingénieur, n2720

Diffusion: Dilatation locale et Redistribution du volume libre

 $T > T_g$

Blétry et al, Acta mat. 2007

Applications et potentiels

Transformateur de distribution

Transformateur de distribution et économie d'énergie (rapport ADEME) Réduction des pertes à vide.

Remplacement du FeSi orienté Verre métallique : induction à saturation élevée résistance mécanique élevée mais fragile.

Transformateur 400 Hz

JC Perron, Techn. Ing. D2 150

Induction maximale (T) Composants passifs de l'électronique de puissance

Induction et résistivité élevées : Faibles pertes à Hte Fz (MHz) Remplacement ferrites

Structurales

Structurale potentielle

Mg₆₀Cu₃₅Zn₅ (ETH, Suisse)

- Très résistant
- Se dissout lentement dans les tissues
- Non toxique et absence de formation de bulles H2 Bruno Zberg et al, NATURE MATERIALS 8 (2009) 887

Remplacement de l'inox ou Ti nécessitent une 2nd intervention.

Micro-objets fonctionnels

Surface fonctionnalisée Université de Sydney

Fixed area 600 µm Release state (Voltage OFF) Pull-in state (Voltage ON)

Microactuateur ressort conique Pd₇₆Cu₇Si₁₇

Dans, Greer, Materials today 12 (2009)

Micro-engrenage, Tohoku Univ. Sendai Japon

Bibliographie

Verres métalliques

Revues

- Alliages métalliques amorphes, Y. Champion, Techniques de l'ingénieur. M4 025
- Bulk Metallic glasses, WH Dong et al. Materials science and engineering, R 44 (2004) 45-89.
- Atomic level structure and structure property relationship in metallic glasses. YQ Cheng et al Prog. Mater. Sci. 56 (2011) 379-473.

Lire aussi sur la structure : Dense packing of Platonic and Archimedean solids, S. Torquato et al Nature 460 (2009) 876-880.

Transition vitreuse, thermodynamique

• Supercooled liquids and the glass transition, PG Debenedetti, Nature 410 (2001) 259-267.