Very-High Temperature NMR of Oxide Glasses & Melts

P. Florian CEMHTI-CNRS, Orléans, France

Ecole du GDR Verre, Fréjus, Avril 2015

The Music of Atoms An (Ultra) Short Introduction to NMR Spectroscopy

And in 1945 (SS)NMR was born...

Felix Bloch 1905-1983 (Stanford)

Ed Purcell 1912-1997 (Harvard)

proton NMR of paraffin wax

Purcell, Phys. Rev. 1946

The Nobel Prize in Physics 1952 "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

"Dr Bloch and Dr Purcell! You have opened the road to new insight into the micro-world of nuclear physics. Each atom is like a subtle and refined instrument, playing its own faint, magnetic melody, inaudible to human ears. By your methods, this music has been made perceptible, and the characteristic melody of an atom can be used as an identification signal. This is not only an achievement of high intellectual beauty - it also places an analytic method of the highest value in the hands of scientists."

from Les Prix Nobel en 1952, Editor Göran Liljestrand, [Nobel Foundation], Stockholm, 1953

NMR TimeLine

Solid-State NMR Today

Magnetic Resonance Imaging

Nuclear + Magnetic + Resonance (Spectroscopy)

The Magnetization

Pulse, Free Induction Decay and spectral domain

And do not forget to relax...

The chemical shift interaction

Possibilities & Opportunities

1 H Bydrugen 1.00794 3 Li Lihium 6.941 11 Na Sodium 22.989770	4 Beyllium 9.012182 12 Magnesum 24.3050	$I = 1/2$ Quadrupolar $\begin{array}{c cccc} 5 & 6 & 7 & 8 & 9 \\ \hline B & C \\ 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.9994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.9994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.9994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0074 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.9994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.994 & 18.994 & 15.994 & 18.994033 \\ \hline 10.811 & 12.0107 & 14.00674 & 15.994 & 18.994 & 15.994 & 18.994 &$															2 He Hefiam 4.003 10 Ne Neo 20.1797 18 Ar Argon 39.948
19 K Potassitum 30.0983	20 Ca Calcium 40.078	21 Sc Scandium 44 955910	22 Ti ^{Titanium} 47.867	23 V Vanadium 50.9415	24 Cr Chromium 51 9961	25 Mn Manganese 54 938049	26 Fe	27 Co Cobali 58 933200	28 Ni Nickel 58 6934	29 Cu ^{Copper} 63 546	30 Zn ^{Zinc} 65 39	31 Gallium 69.723	32 Ge Germanium 72.61	33 As Ansenic 74.92160	34 Se Selenium 78.96	35 Br Bromine 79 904	36 Kr Krypton 83.80
37 Rb Rubidium	38 Sr Strontium	39 Y Yitrium	40 Zr Zirconium	41 Nb	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag	48 Cd	49 In Indium	50 Sn Tm	51 Sb Antimony	52 Te	53 I	54 Xe
85.4678 55 Cs Cesium	87.62 56 Ba Barium	88.90585 57 La	91.224 72 Hf	92.90638 73 Ta Tantalam	95.94 74 W Tungsten	(98) 75 Re Rhenium	101.07 76 Osmium	102.90550 77 Ir Iridium	106.42 78 Pht Phtman	107.8682 79 Au Getd	112.411 80 Hg	114.818 81 Tl Thallium	118.710 82 Pb	121.760 83 Bi Besmuth	127.60 84 Po Polenium	126.90447 85 At Astatine	131.29 86 Rn Radon
132.90545 87 Fr Francium (223)	137.327 88 Ra Radium (226)	138.9055 89 Ac Actinium (227)	178.49 104 Rf (261)	180,9479 105 Db Dubnium (262)	183,84 106 Sg Seaborgium (263)	186.207 107 Bh Bobrium (262)	190.23 108 Hassium (265)	192,217 109 Mt Meitherium (266)	195.078 110 (269)	196.96655	200.59 112 (277)	204.3833 113	207.2 114	208.98038	(209)	(210)	(222)
			1	58 Ce Cerium 140,116 90 Th Thotsum	59 Pr Praseodymium 140.90765 91 Pa Protactinium	60 Nd 144.24 92 U Unmum	61 Promethiam (145) 93 Np Neptunium	62 Sm Samarium 150.36 94 Pu Phutesium	63 Eu Europium 151.964 95 Am Americium	64 Gd Gadolnoum 157.25 96 Cm Currum	65 Tb Tethum 158,92534 97 Bk Berkelium	66 Dy Dysprodum 162.50 98 Cf Californum	67 Ho Hotmaam 164,93032 99 ES Einsteimaan	68 Er Erbium 167.26 100 Fm Fermium	69 Tm Thalium 168.93421 101 Md Mendelevium	70 Yb Ymebiam 173.04 102 No Nobelium	71 Lu Lutetium 174,967 103 Lr Lawrencium

Observability

- Abundance
- Gyromagnetic ratio
- Quadrupolar momentum
- Paramagnetism

Numerous possibly sensitive nuclei but few easily observed

The most usually observed are *«light»* nuclei

◊I=1/2: ¹H,¹³C, ²⁹Si, ³¹P
 ◊I=3/2: ²³Na, ¹¹B, ⁷Li
 ◊I=5/2: ²⁷AI, ¹⁷O

Challenge: Anisotropic Interactions

Figure 1. ⁷¹Ga (a) and ⁶⁹Ga (b) single-crystal NMR spectra showing the region of the central transitions for the twin β -Ga₂O₃ crystal. Both sets of spectra are recorded for rotation about the $-x^{T}$ axis.

It's a Kind of Magic...

(²⁷Al) Nuclear Magnetic Resonance

Position

(chemical shift, magnetic shielding):

- coordination number
- 2nd coordination sphere neighbors
- Iocal geometry

Width & shape (*quadrupolar coupling*, EFG):

- (p-) orbital population unbalance
- Iocal polyhedra distortion
- possibly long-range effect

Solid-State Nuclear Magnetic Resonance

NMR is an atom-specific local probe
 distinguish between chemical environments
 quantitative

NMR & Motion...

Time Scales

Effect of Dynamic « Disorder »

NMR & Melts: What Can We Learn?

"Structure" of the Melt

High-Temperature Dynamics

- → "Brownian motion in a liquid or noncrystalline solid" (autocorrelation function $\alpha \exp(-t/\tau_c)$)
- → Relaxation dominated by the fluctuation of the quadrupolar interaction

$$1/T_{1} = C \left(\frac{\tau_{c}}{1 + (\omega \tau_{c})^{2}} + \frac{4\tau_{c}}{1 + (2\omega \tau_{c})^{2}} \right)$$

➤ Correlation time thermally activated

$$\tau_c = \tau_0 \exp\left(\frac{E_a}{kT}\right)$$

Timescales

Relaxation

Two types of relaxation process:

- Spin-lattice relaxation. Involves exchange of energy with the lattice and requires transitions between Zeeman levels.
- Spin-spin relaxation. Involves loss of the x,y-components of the magnetization. Does not require energy to be exchanged with the surroundings and does not necessarily result in changes in the populations in the nuclear spin energy levels.

In Solids: $T_1 \neq T_2 \neq T_2^*$

The Autocorrelation Function

The Spectral Density

T_1 and T_2 Relationships

Designs

STATIC (HOME MADE!)

- Stebbins, J. F.; Schneider, E.; Murdoch, J.B.; Pines, A.; Carmichael, I. S. E. "*New probe for hightemperature NMR-spectroscopy with ppm resolution*" Review of Scientific Instruments **1986** *57* 39-42
- Shimokawa, S.; Maekawa, H.; Yamada, E.; Maekawa, T.; Nakamura, Y.; Yokokawa, T. "A hightemperature (1200°C) probe for NMR experiments and its application to silicate melts" Chemistry Letters **1990** *4* 617-620
- Adler, S.B.; Michaels, J.N.; Reimer, J.A."*A Compact High-temperature Nuclear-Magnetic-Resonance Probe for Use in a Narrow-Bore Superconducting Magnet*" Review of Scientific Instruments **1990** *61* 3368-3371
- Kolem, H.; Kanert, O.; Schulz, H.; Guenther, B. "*Design and Operation of a Variable High-Temperature Oxygen Partial-Pressure Probe Device for Solid-State NMR*" Journal of Magnetic Resonance **1990** *87* 160-165.
- Massiot, D.; Bessada, C.; Echegut, P.; Coutures, J. P.; Taulelle, F. "High-Temperature NMR-Study of Lithium Sodium-Sulfate" Solid State Ionics 1990 37 223-229

MAS

- Stebbins, J. F.; Farnan, I.; Williams, E. H.; Roux, J. "Magic Angle Spinning NMR Observation of Sodium Site Exchange in Nepheline at 500°C" Phys. Chem. Minerals 1989 16 763 (Doty Scientific)
- van Wüllen, L.; Schwering, G.; Naumann, E.; Jansen, M. "*MAS-NMR at very high temperatures*" Solid State Nucl. Magn. Reson. **2004** *26* 84 (Bruker)

Furnace Designs

HT MAS by Doty: Probe Design

Laser UHT Probe: the Crucible Design

Laser UHT Probe: the Levitation Design...

Cooling down Melts

- → Contactless technology
- \rightarrow Up to 2500°C
- \rightarrow Time resolved experiments

Florian et al., Solid State Nuc. Magn. Reson. **5** 233 (1995) Ansel et al., Phys. Rev. Let. **78** 464 (1997)

HT MAS by Bruker: Probe Design

NMR around T_g

The Silicate Glass Transition Dynamics

The Silicate Glass Transition Dynamics

Farnan & Stebbins, J. Amer. Chem. Soc. 1990 112 32-38

Probing Slow Motions in Silicates

Farnan and Stebbins, Science **1994** 265 1206-1209

The Boro-Silicate Decoupling Case

Stebbins et al., J. Non Cryst. Solids 1998 224 80-85

Alumino-Phosphate Glasses

Wegner S, J Phys Chem B 2009 113 416-425

van Wullen, J Phys Chem B 2007 111 7529-7534

$Na_2Si_3O_7 - NaAlSi_3O_8 : {}^{27}Al NMR$

LeLosq et al., Geochim. Cosmochim. Acta 2014 126 495-514

²³Na Position vs Temperature

LeLosq et al., private communication

George et al., SSNMR 1997 10 9-17

²³Na & ²⁷Al Relaxation Times

NMR in the Molten State

The Borate Liquids Dynamics

Inagaki et al., Phys. Rev. B 1993 47 674-680

The Borate Liquid Dynamics

Inagaki et al., Phys. Rev. B 1993 47 674-680

From Liquid to Glass: CaAl₂O₄

Massiot et al., J. Phys. Chem. 1995 99 16455-16459

Kozally et al., Phys. Status Solidi C **2011** *8* 3155-3158 Neuville et al., Rev. Miner. Geochem. **2014** *7*8 779-800

Adding Silica: Effects on the Structure

$Al_2O_3 \cdot SiO_2 \cdot Ln_2O_3$ (SiO₂ > 50mol%)

- \sim The glass is not a linear extrapolation at T_a of the liquid
- AIV favored at High temperature (what mechanism stabilizes AIV at low temperature?)
- $rightarrow [Al_2O_3]/[Ln_2O_3]$ decreases \rightarrow faster Al^V \rightarrow Al^{IV} conversion with T, i.e. "fragile" liquid
- Ln does not favor Al^V

Structure of the Molten State

$Al_2O_3 \bullet SiO_2 \bullet Ln_2O_3$ (SiO₂ > 50mol%)

Florian et al., J. Phys. Chem. B. 2007 111 9747-9757

Adding Silica: Effects on Dynamics

Gruener et al., Phys. Rev. B 64(2) (2001)

Florian et al., J. Phys. Chem. B. 111 9747 (2007)

Class is Over... Do Science & Have Fun!

Aknowledgements

