Very-High Temperature NMR of Oxide Glasses & Melts

P. Florian, D. Massiot CEMHTI-CNRS, Orléans, France

USTV ESRF School, Grenoble, November 2019

NMR & Motion...

Time Scales

Timescales

Effect of Dynamic « Disorder »

NMR & Melts: What Can We Learn?

"Structure" of the Melt ²⁷**AI** - Y₃Al₅O₁₂ Solid (average) coordination change Liquid at 2250°C mm 20 80 60 40 0 -20

High-Temperature Dynamics

- → "Brownian motion in a liquid or noncrystalline solid" (autocorrelation function $\alpha \exp(-t/\tau_c)$)
- → Relaxation dominated by the fluctuation of the quadrupolar interaction

$$1/T_{1} = C \left(\frac{\tau_{c}}{1 + (\omega \tau_{c})^{2}} + \frac{4\tau_{c}}{1 + (2\omega \tau_{c})^{2}} \right)$$

➡ Correlation time thermally activated

$$\tau_c = \tau_0 \exp\left(\frac{E_a}{kT}\right)$$

Relaxation

Two types of relaxation process:

- Spin-lattice relaxation. Involves exchange of energy with the lattice and requires transitions between Zeeman levels.
- Spin-spin relaxation. Involves loss of the x,y-components of the magnetization. Does not require energy to be exchanged with the surroundings and does not necessarily result in changes in the populations in the nuclear spin energy levels.

In Solids: $T_1 \neq T_2 \neq T_2^*$

The Autocorrelation Function

The Spectral Density

T_1 and T_2 Relationships

NMR around T_g

Alumino-Phosphate Glasses

Wegner S, J Phys Chem B 2009 113 416-425

van Wullen, J Phys Chem B 2007 111 7529-7534

The Silicate Glass Transition Dynamics

The Silicate Glass Transition Dynamics

Farnan & Stebbins, J. Amer. Chem. Soc. 1990 112 32-38

Probing Slow Motions in Silicates

Georges, Am Miner 1995 80 878-884 [²³Na albite] Stebbins, J. Phys Chem Miner 1989 16 763-766 [²³Na nepheline] Farnan, Science 1994 265 1206-1209 [²⁹Si silicates]

The Boro-Silicate Decoupling Case

Stebbins et al., J. Non Cryst. Solids 1998 224 80-85

$Na_2Si_3O_7$ -NaAlSi_3O_8 : ²⁷Al NMR

LeLosq et al., Geochim. Cosmochim. Acta 2014 126 495-514

²³Na Position vs Temperature

LeLosq et al., private communication

George et al., SSNMR 1997 10 9-17

²³Na & ²⁷Al Relaxation Times

NMR in the Molten State

The Borate Liquids Dynamics

Inagaki et al., Phys. Rev. B 1993 47 674-680

The Borate Liquid Dynamics

Inagaki et al., Phys. Rev. B 1993 47 674-680

From Liquid to Glass: CaAl₂O₄

Massiot et al., J. Phys. Chem. 1995 99 16455-16459

Kozally et al., Phys. Status Solidi C **2011** *8* 3155-3158 Neuville et al., Rev. Miner. Geochem. **2014** *78* 779-800

Adding Silica: Effects on Dynamics

Gruener et al., Phys. Rev. B 64(2) (2001)

Florian et al., J. Phys. Chem. B. 111 9747 (2007)

Alkaline-Earth AluminoSilicates

Structure of the SrO-Al₂O₃-SiO₂ Melts

- Novikov et al (2017), Chem. Geol. **461** 115 Charpentier et al. (2018), J. Phys. Chem. B 122 9567-9583 Florian et al. (2018), Phys Chem. Chem. Phys., **20** 27865-27877
- R = 1: distribution of Si/Al is random in the melt
- R = 3: presence of NBOs on AI in the melt, not always in the glass
- R < 1: complex behavior with competing mechanisms</p>

Dynamics of Viscous Flow

Zener, J. Appl. Phys. **22** 372 (1951) Perkins & Begeal, J. Chem. Phys. **54** 1683 (1971)

Urbain et al., Geochim. Cosmochim. Acta **46** 1061 (1982) Novikov et al., Chem. Geol. **461** 115 (2017)

Dynamics of the SrO-Al₂O₃-SiO₂ Melts

Increase content of SiO₂ increases correlation time ($\Leftrightarrow D_0 \downarrow$ and $\eta \uparrow$) The presence of NBO

- rightarrow stabilizes correlation time \rightarrow oxygen diffusion ~ 310 10⁻¹² m²/s
- Florian et al. (2018), Phys Chem. Chem. Phys., **20** 27865-27877
- reduces the activation energy \rightarrow oxygen diffusion made easier

Class is Over... Do Science & Have Fun!

Aknowledgements

