

ATELIER CEA-USTV: Physical properties of glasses from low to high temperatures 12-14/04/2023 – Avignon

Hot-Stage Microscopy: a thermo-optical tool for many fields of application

François O. MÉAR

Common viscosities

 \backslash

Methods of viscosities measurements

- a) Falling Ball
- b) Counterweight ball

c) Rotation

- d) Sink-point
- e) Free fiber elongation
- f) Load fiber elongation
- g) Creep deformation
- h) Penetrometer
- i) Torsion of a tube
 - Parallel plates

j)

Viscosities commonly evaluated by viscometers

- depending on the temperature range (rotation for HT and fiber elongation for LT)
- depending on the composition of the glass (one curve / composition)
- require large amounts of sample

Indirectly method by heating microscopy firstly developed by Scholze in 1962

- viscosity-temperature curve established from three characteristics temperatures using the VFT relation : transition point, Littleton point and working point
- relationship between viscosity and temperature in float and borosilicate glasses as a function of specific shape during heating

Nieto et al. (1997) & Pascual et al. (2001) established the relation between the characteristic points of viscosity obtained by HSM and the corresponding values measured on the viscosity curve for different glass compositions

Hot-stage microscope (HSM): apparatus

- $\succ \Delta L/L$: thermal expansion
- $\blacktriangleright \Delta S/S \rightarrow \Delta V/V$: sintering / deformation
- Shape factor: viscosity
- ➤ Wettability
- Surface tension / density

Hot-stage microscope (HSM): *sample*

Hot-stage microscope (HSM): software

New measurement			X
Please enter the properties o	f the new measure	ement.	
Identification: Test 5		1	
Data folder: M9811170	Heating profile:		
Group: Exercise measurements	Rate ('C/min)	End temp. (°C)	Dwell time (hh:mm)
Operator: KT	▶ 5 ¥	1200	00:00
Device: Erhitzungsmikroskop 1			•
<u>M</u> aterial:			
Notes:			
Determination of sphere and flow te	mperature accord	ing to DIN/I	so
Determine start of sintering following	the measurement		
Help	<< <u>B</u> ack	>> Ne <u>x</u> t	C <u>a</u> ncel

Measurement settings

This form requests you to fill in some informations concerning the taking of this measurement. At »Conditions for new image«, you set the conditions for storing a new image. At »End criteria«, you set the conditions for automatically finishing the data acquisition. Please don't forget to check the cycle time settings!

X

l	Conditions for taking a new	image:	End criteria:
l	Area change: 5 %	Corner angle change: 12 %	✓ Flow temperature detected
l	Shape <u>factor</u> change: 5 %	Temperature change: 50 °C	Final temperature:
	Start images at: 600 °C	☐ At least e <u>v</u> ery 0 s	1000 °C
	Named setting: Standard		Cyle time:
		<u>S</u> tore Dejete	5 5
	<u>H</u> elp	<< <u>B</u> ack	>> Ne <u>xt</u> C <u>a</u> ncel

Hot-stage microscope (HSM): *software*

Heating microscope measurement: S	ample 'Test 5'		×
Measurement: Test 5 Group: Exercise measurements Device: Erhitzungsmikroskop 1 Operator: KT Messages:	Cond. for autom. shooting: Area change: 5 🔷 % Shape factor change: 3 🔶 % Corner angle change: 10 🔶 % Results so far:		
Current data: Elapsed time: Ter Width: Height:	nperature:		
Shape factor: Area:	It. contact angle: rt. contact angle:	<u>Store!</u>	S m <u>o</u> othing
Trends:	95		
100%	90'		
Width Height Shape factor Area	It. Corner rt. Corner It. Contact rt. Contact		
	Choose corner	§tart measurement Stop measurement	ment <u>C</u> ancel
Adjust test piece. Lontinue with 'Ch	oose corner.		

Hot-stage microscope (HSM): results

Print	×
Printer: HP OfficeJet Series 300 Printer to L	PT1:
Print: Print:	images images p images Below: 2 cm Below: 2 cm Below

nesults of measurement goon i	<u>^</u>
Identification: g03ff1	
Material: Rohglasur 380	
Notes:	
Operator: KT	Data folder: M9807060
<u>G</u> roup: Test Device: Erhitzungsmikroskop 1	Complete path of data folder: d:\vb\emi\daten\Test\M9807060
Heating profile: Rate Temp. Dwell ▲ ▶ 80°C/min 1450°C 00:10 ↓	Results: Sintering temperature: 556*C Deformation temperature: 1069*C Sphere temperature: 1103*C Hemisphere temperature: 1184*C Flow temperature: 1398*C
Measurement date: 06.07.98 Reason for finishing: Flow temperatu	Data count: 589 Image count: 45 re reached
<u>H</u> elp	Cancel

20

Hot-stage microscopy curves

- Heating rate
- Granulometry
- Atmosphere (Air; Ar; N₂; H₂/H₂O)
- Substrate
- Composition

Influence of the heating rate

Influence of the granulometry

Influence of the atmosphere

Influence of the substrate

Influence of the composition

45SiO₂ - 10B₂O₃ - 27SrO - 18MgO (Tg = 653°C)

Influence of the composition

 $45SiO_2 - 10B_2O_3 - 27SrO - 18CaO (Tg = 608°C)$

Determination of the viscosity-temperature

Phys. Chem. Glasses., 2005, 46 (5), 512-520

A new method for determining fixed viscosity points of glasses

M. J. Pascual*, A. Durán Instituto de Cerámica y Vidrio (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain M. O. Prado Centro Atómico Bariloche-Comisión Nacional de Energía Atómica, 8400 S.C. de Bariloche, Río Negro, Argentina

Influence of:

- Glass composition ⇔ surface tension (calculated by Dietzel coefficient)
- Heating rate: 5 10°C.min⁻¹
- Particle size / relative density: ϕ < 20 µm; 20-40 µm; 40-60 µm
- Viscosity values at the first shrinkage temperature TFS Frenkel model (based on the particle size)
- Viscosity values at the maximum shrinkage temperature TMS Mackenzie–Shuttleworth model (based on the softening of the glass)

Fixed viscosity points vs. models

Viscosity points	Scholze ⁽⁵⁾ $\log \eta \pm \sigma$ (P)	Pascual et al ⁽⁴⁾ log $\eta \pm \sigma$ (P)	This work $\log \eta \pm \sigma$ (P)
First shrinkage Maximum shrinkage Deformation Sphere Half ball Flow	10.0 ± 0.3 8.2 ± 0.5 6.1 ± 0.2 - 4.6 ± 0.1 4.1 ± 0.1	$8 \cdot 9 \pm 0 \cdot 25$ $7 \cdot 9 \pm 0 \cdot 2$ $6 \cdot 6 \pm 0 \cdot 1$ - $4 \cdot 5 \pm 0 \cdot 1$ $3 \cdot 1 \pm 0 \cdot 15$	$9 \cdot 1 \pm 0 \cdot 1$ $7 \cdot 8 \pm 0 \cdot 1$ $6 \cdot 3 \pm 0 \cdot 1$ $5 \cdot 4 \pm 0 \cdot 1$ $4 \cdot 1 \pm 0 \cdot 1$ $3 \cdot 4 \pm 0 \cdot 1$
	qualita	ative	quantitative

Example: Schott 8422

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

→ Limited interactions with other components of electrochemical systems

Selection criteria (Sciglass software)

→ $T_g > 600$ °C → 750°C < $T_{Littleton} < 900$ °C → TEC > 5 × 10⁻⁶ K⁻¹ → Limited amount of P₂O₅

Coillot et al, International Journal of Hydrogen Energy, 2012

Requirements

$\rightarrow I_g > 600$	C	
→ 750°C <	T _{Littleton} < 900°C	

 \rightarrow TEC > 5 × 10⁻⁶ K⁻¹

 \rightarrow Limited amount of P₂O₅

Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al_2O_3	Ga ₂ O ₃	La ₂ O ₃	$\mathbf{Y}_2\mathbf{O}_3$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
Vsc1	70.24	-	1.92	5.26	-	-	-	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
Vsc2	63.30	, .	-	-		-	4.99	20.72	6.81	4.45	-	 2	-	-	Yes	566
Vsc3	67.46	13.34		: 	-	1.03	-	13.67	4.50	-	. 5	 0	-	-	No	765
Vsc4	61.39	.	6.14		14.34	-	.	13.67	4.46		-	50	-	11 7 1	No	580
Vsc5	66.01	3.43	5.57	4.21	-	-	-	2.16	0.71	12.21		-		5.70	Yes	686

Requirements

 \rightarrow T_g > 600°C

$$\rightarrow$$
 750°C < T_{Littleton} < 900°C

 \rightarrow TEC > 5 × 10⁻⁶ K⁻¹

 \rightarrow Limited amount of P₂O₅

Molar %	SiO2	ZrO ₂	B ₂ O ₃	Al_2O_3	Ga ₂ O ₃	La ₂ O ₃	Y ₂ O ₃	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
Vsc1	70.24	÷	1.92	5.26	-	-	-	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
Vsc2	63.30	 17	-	-	(.)	-	4.99	20.72	6.81	4.45	-	 12	-	(.)	Yes	566
Vsc3	67.46	13.34		2 	-	1.03	 11	13.67	4.50	-	1 5	 13	-	2 7 1	No	765
Vsc4	61.39		6.14	05	14.34	-		13.67	4.46	25	-	50	-	850	No	580
Vsc5	66.01	3.43	5.57	4.21	-	, .)	-	2.16	0.71	12.21	-	- (-	5.70	Yes	686

Requirements

Selection criteria (Sciglass software)

- → $T_g > 600$ °C → 750°C < $T_{Littleton} < 900$ °C
- \rightarrow TEC > 5 × 10⁻⁶ K⁻¹

 \rightarrow Limited amount of P₂O₅

ľ	Molar %	SiO2	ZrO ₂	B_2O_3	Al_2O_3	Ga_2O_3	La ₂ O ₃	$\mathbf{Y}_{2}\mathbf{O}_{3}$	Na ₂ O	K ₂ O	CaO	BaO	ZnO	MgO	SrO	Crystallisation	T _g / °C
	Vsc1	70.24	×	1.92	5.26	-		-	3.60	1.19	0.60	3.32	9.05	4.82	-	Yes	650
_	Vsc2	63.30	π¢	-	-	-	3 1	4.99	20.72	6.81	4.45	3 - 5	-2	-	-	Yes	566
	Vsc3	67.46	13.34	-	-	-	1.03	-	13.67	4.50	-	-	-	-	-	No	765
L	Vsc4	61.39	= 2	6.14	05	14.34	-		13.67	4.46	2.5	-	50	15	177	No	580
_	Vsc5	66.01	3.43	5.57	4.21		-	-	2.16	0.71	12.21	-	-	÷	5.70	Yes	686

Requirements

- \rightarrow T_{Littleton} (η = 10^{7.6} Poise) = 800°C
- \rightarrow Low viscosity at 900°C
- \rightarrow No crystallization at 800°C

Objective decrease of thermal characteristics

 \rightarrow ZrO₂ substituted by SiO₂ and/or B₂O₃

Molar %	SiO ₂	ZrO ₂	B ₂ O ₃	La ₂ O ₃	Na ₂ O	K ₂ O	Crystallisation	Tg / °C	T _s / °C
Vsc3	67.46	13.34	-	1.03	13.67	4.50	No	765	854
Vsc31	64.52	7.09	10.03	0.99	13.07	4.30	No	616	675
Vsc32	69.78	7.03	4.98	0.98	12.97	4.27	No	630	692
Vsc33	74.95	6.97	-	0.97	12.87	4.23	No	610	675
Vsc34	65.96	10.14	5.13	1.01	13.36	4.40	No	668	750

HSM Measurements

 \rightarrow Is the viscosity low enough to allow the seal forming at 900°C ?

 \rightarrow Heat treatment: 10h at 900°C

HSM Measurements

 \rightarrow Is the viscosity low enough to allow the seal forming at 900°C ?

 \rightarrow Heat treatment: 10h at 900°C

Elaboration

Furnace temperature vs. time

How to prepare a foam glass ?

Foaming agent	Mechanism			
Na ₂ CO ₃ CaCO ₃ MgCa(CO ₃) ₂ (Dolomite) Na ₂ SO ₄ CaSO ₄	Reactive- / Thermal decomposition			
<mark>Mn_xO_y</mark> Fe _x O _y Cr _x O _y PbO	Redox reaction in melt			
AIN TIN Si ₃ N ₄	Redox reaction			
SiC Carbon	Surface reaction Solid-Gas reaction			
Water glass	Dodov			
	Foaming agent Na2CO3 CaCO3 MgCa(CO3)2 (Dolomite) Na2SO4 CaSO4 MnxOy FexOy CrxOy PbO AlN TiN Si3N4 SiC Carbon Water glass			

Viscous window

Gas bubbles prisoners of the viscous melt \rightarrow Expanded glass

viscosity curve

Viscous window

Foaming ability

Foaming reaction

Foaming reaction

CRT panel + MnO₂

CRT panel + MnO₂

Volume expansion