X-ray absorption spectroscopy: a structural point of view

Georges Calas, Laurent Cormier, Laurence Galoisy, Gérald Lelong Institut de Minéralogie, Physique des Matériaux et Cosmochimie Université P&M Curie, Paris

I. Measuring x-ray absorption spectra

- Pioneer measurements using x-ray tubes (bremsstrahlung)
- Synchrotron radiation extracted from a storage ring ("parasitic use": coexistence with particle physics)
- Now, dedicated large user facilities (6,500 scientists/year at ESRF; 30% projects involving industrial participation)
- Interest for multicomponent materials: chemical selectivity, partial radial distribution functions+ site symmetry/coordination numbers (+ redox)

You first need a synchrotron...

Choice depends on E, sample environment, detection systems... + selection!

(Newville, 2004)

(Newville, 2004)

EXAFS (1)

Interference phenomenon between outgoing and backscattered photoelectron wave= modulation of the absorption function

• • • EXAFS (2)

Interatomic distance R_j and coordination number N_j # Scattering amplitude $f_j(k)$: types of neighbors

$$\chi(k) = \sum_{j} \frac{N_j}{kR_j^2} f_j(k) \exp\left(-2\sigma^2 k^2\right) \exp\left(\frac{-2R_j}{\lambda}\right) \sin(2kR_j + 2\delta + \theta)$$

- Damping: Debye Waller term and mean free path
- Phase shift: depends also on the type of neighbors

2. A large diversity of sites in glasses: XANES

Structural aspects: coordination number and site geometry

Cations: a well-defined site geometry (1)

Zr L₃-edge XANES in a borosilicate glass: Zr in an octahedral site Lorentzian ("natural shape") components = regular octahedra

(Galoisy et al., 1999)

Pre-edge features on the low-energy side of Kedges of transition metal ions = transitions to 3dderived empty levels. GLASS: Ne₂0, 2 SiO₂, 3 Wt⁰/o Fe 3 7093 PHOTON ENERGY

Crystal-field splitting of Fe³⁺ pre-edge features: Fe³⁺ in tetrahedral symmetry

(Farges et al., 2012)

(Calas and Petiau, 1983)

Tetrahedral Al³⁺: confirms a network-forming position in Fe-bearing jadeitecomposition glasses (NaAlSi₂O₆)

(Weigel et al., 2008)

Evolution of glass surface during leaching : Zr L-edge XANES

Surface detection (total electron yield)

Crystalline references: dependence of XANES on coordination number (CN)

Deionized water: CN from 6 (glass) to 7 (after corrosion)

Saturated Conditions: CN=6

(Pelegrin et al., 2010)

3. A large diversity of local structures: EXAFS

- cation-ligand (oxygen) distances
- nearest and next-nearest neighbors

Radial information = well-defined sites

Cr K-edge EXAFS on Na_2O 2SiO₂ glass (1 wt% Cr³⁺)

⁽Villain et al., 2010)

Improving the information

Zr K-edge EXAFS in borosilicate glasses Large E range (17700-21200eV): improves data accuracy

Zr-octahedra distort with increasing [Zr]: still a random distribution?

(Jollivet et al., 2013)

Tetrahedra ± distorted (Zn, Ni, Fe³⁺)

Small coordination number vs. crystals

Uranium speciation in glasses: a peculiar behavior

- U(VI) as uranate species: different from the uranyl groups UO₂²⁺.
 Explains optical properties (color, luminescence)
- U as uranyl species in gels = speciation change during glass alteration.

(Petit-Maire et al., 1986)

(Jollivet et al., 2002)

EXAFS: The structural role of transition elements: connection of cations with glass structure?

Radial information: connection with glass framework

(Galoisy et al., 1999)

(Le Grand et al., 2000)

Cations in glasses: Structural role

Stabilizing role of Zn,
Zr,Ti..., provided adequate
charge compensation.
Increases mechanical
properties and enhancing
chemical durability.

 Zn^{2+} = Network-forming position

 Zr^{4+} = Networking role of Zr^{4+} :

Na⁺ serves for local charge compensation
prevents Zr clustering

(Le Grand et al., 2000)

(Ferlat et al., 2006)

Cations in glasses: Structural role

Low coordination numbers: agreement with XANES

Ni: CN=4, 5

Zn: CN=4

 Mo^{VI} : CN=4

Zr: CN=6

(Greaves and Sen, 2007)

Results at variance with earlier speculations

Organization of some order at short range around cations.# Confirms Pauling rules# Incompatible with just filling the holes of a random network

A figure that may get a glass spectroscopist upset ...

4. A few examples of applications of EXAFS in glasses

Cations in glasses: competition for charge compensation

Intermediate (network formers/networking) elements in glasses

Increasing the concentration of a more competitive intermediate element will force a less competitive cation to change coordination and its influence on glass properties, as

- nucleating or stabilizing role: Zr, Zn, Ti...). -
- links with glass stability relative to dissolution

Model of a Na–Ca alumino-borosilicate glass (nuclear glass analog): neutron scattering/calculations on a simplified.

(Calas et al., 2003)

From site connections to clustering

Proportion of tetrahedral Co²⁺ is larger in the KCa glass than in the NaCa glass. More Si second

(ii) "tricluster"

(Hunault et al., 2014)

Glass structures as a nucleating precursor

Ti sites in 2MgO–2Al₂O₃–5SiO₂ glass

Zr-Zr linkages

No Zr-Zr links

Preferential Ti-Al site linkages in the glass : similar to Al₂TiO₅ phases.

(Guignard et al., 2010)

SiO₄

AIO₄

Importance of the medium range structure to rationalize nucleation properties.

(Cormier et al., 2015)