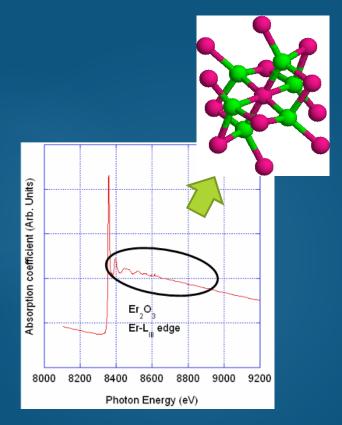


X-ray Absorption Spectroscopy in the study of irradiated glasses FRANCESCO D'ACAPITO CNR-IOM-OGG C/O ESRF


Layout

- Intro to XAS
- Damage on the main components
- Damage on dopants
- Perspectives
- Conclusions

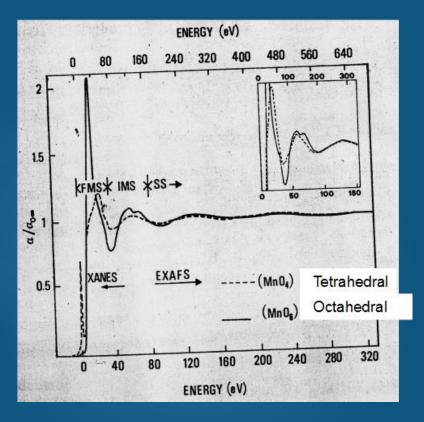
X-ray Absorption Spectroscopy

The information is retrieved from the oscillations above core level absorption edge

Local parameters

- Nature and distance of ligands
- Site simmetry
- Valence state

Bad news:


U need a synchrotron

٠

٠

۰

Regions of a XAS spectrum

XANES

- Up to 50 eV
- Long photoelectron wavelength

ര

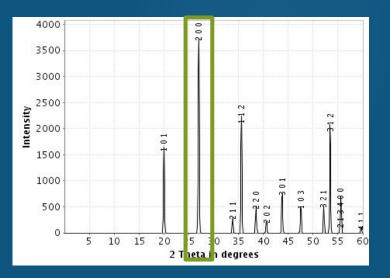
Istituto Officina dei Materiali

- Electronic structure
- Local geometry, symmetry
- Complex scattering processes
- EXAFS

٠

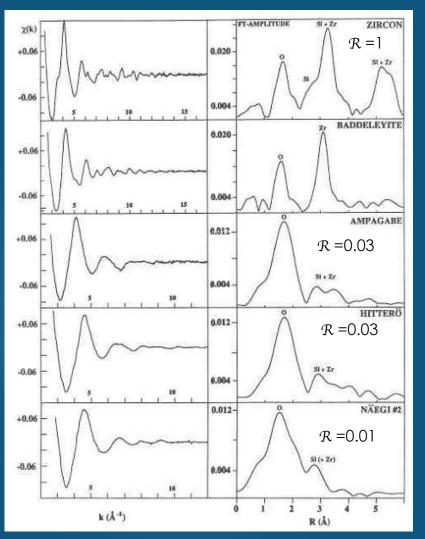
- Short photoelectron wavelength
- Quantitative
- Dominated by single scattering

American Mineralogist, Volume 76, pages 60-73, 1991

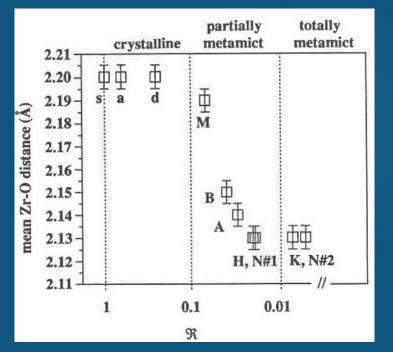

Structural analysis of radiation damage in zircon and thorite: An X-ray absorption spectroscopic study

FRANÇOIS FARGES, GEORGES CALAS

Some minerals (ex. ZrSiO4) can undergo amorphization (metamictization) due to the radiation damage (α particles, recoils) from the actinides they contain.

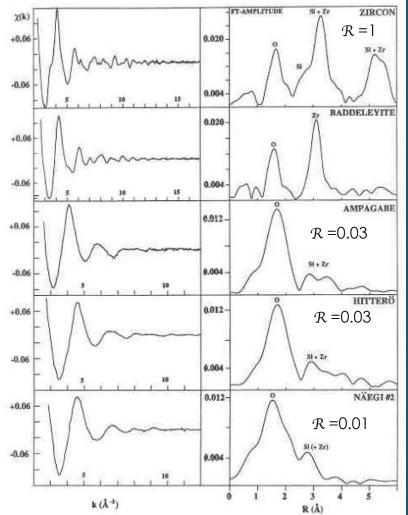

In the case of Zircon the disorder level is measured as the ratio of the 200 diffraction line respect a reference perfect crystal \mathcal{R}

XAS at the Zr-K edge has revealed details of the metamictization process.



XAS data analysis

		0
	R (Å)	N
Crystalline Australia	2.20	8.0
Crystalline Brazil	2.19	8.0
Metamict Miask	2.19	8.0
Metamict Betafo	2.15	7.0
Metamict Ampagabe	2.14	6.9
Metamict Hitterö	2.13	7.1
Metamict Näegi no. 1	2.13	6.8
Metamict Näegi no. 2	2.13	7.1
Metamict Kinkle's Quarry	2.13	7.2



First shell Zr-O Reduction of the NN Shrinking of the bond length

XAS data analysis

		Si			Zr
	R (Å)	N	$\Delta \sigma$ (Å)	R (Å)	N
Crystalline Australia	2.95	2.3	0.03	3.62	4.0
Crystalline Brazil	2.95	1.8	0.03	3.64	3.4
Metamict Miask		UM*		3.62	2.7
Metamict Betafo	2.82	1.1	0.04	3.31	0.9
Metamict Ampagabe	2.86	0.9	0.04	3.34	1.1
Metamict Hitterö	2.86	0.6	0.02	3.34	0.5
Metamict Näegi no. 1	2.90	0.4	0.00	3.34	0.9
Metamict Näegi no. 2	2.88	0.9	0.00		UM*
Metamict Kinkle's Quarry	2.86	0.5	0.00		UM*

Reduction of the second neighbors Shrinking of the coordination length

Conclusion

Model for metamictization

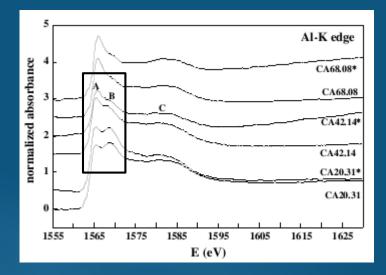
- Displacement of O atoms due to bombardement
- Adaptation of Zr to a lower coordination
 - Shrinking of the Zr-O bond length
- Tilting of the SiO4 tetrahedral neighboring Zr
 - Shrinking of the Zr-Si coordination distances
- Formation of Zr oxide is ruled out.

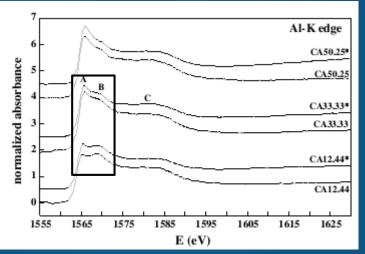
Structure of β-irradiated glasses studied by X-ray absorption and Raman spectroscopies

Daniel R. Neuville ^{a,*}, Laurent Cormier ^b, Bruno Boizot ^c, Anne-Marie Flank Journal of Non-Crystalline Solids 323 (2003) 207-213

Bulk calcium-alumino-silicate glasses Irradiation 2.5 MeV electrons 3.8*10^9 Gy

RAMAN:


presence of O2 in irradiated samples increase of the Q3/Q2 ratio


XAS: AI K edge

-	SiO ₂	Al_2O_3	CaO
CA12.44	11.82	44.10	44.10
CA20.31	20.00	31.00	49.00
CA33.33	33.33	33.33	33.33
CA42.14	42.86	14.28	42.86
CA50.25	50.00	25.00	25.00
CA68.08	68.30	8.71	22.97

β-irradiated glasses

More evident effect on low-silica samples.

Feature A: position related to the Al-O bond length (and to polymerization) Feature B attributed to Q3 species

Blue shift of A Increase of B in the irradiated samples

Both signs of increased polymerization.

Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy

T. Seuthe,¹ M. Höfner,² F. Reinhardt,³ W. J. Tsai,⁴ J. Bonse,⁵ M. Eberstein,¹ H. J. Eichler,² and M. Grehn^{2,a)}

Glasses 20K2O, 20MgO, 60SiO2 Laser irradiation 800nm 130 fs, 2 -> 5.2 J/cm^2

peak Р С в 2,8 Vormalized X-ray Absorption 2.4 2,0 **∖=**0.2 1.6 2 =0 =0.2 1.2 J/cm 0.8 0.0 1300 1310 1330 1290 1320 Photon Energy [eV]

Evolution of the peak A respect to B with irradiation. 'Red' shift of the edge By comparison with several Mg minerals shortening of the Mg-O distance from 2.08 to 2.01 Å. Densification of the matrix

Ag-doped glasses

- Ag frequently used in the realization of waveguides to locally rise the index of refraction.
- Irradiation processes used for promoting Ag aggregation in clusters.
- Clusters possess interesting optical properties
 - Surface Plasmon Resonance
 - Nonlinear optical response
- Useful to create devices 'in waveguide'.
- Several methods used to create clusters

www.elsevier.com/locate/ni

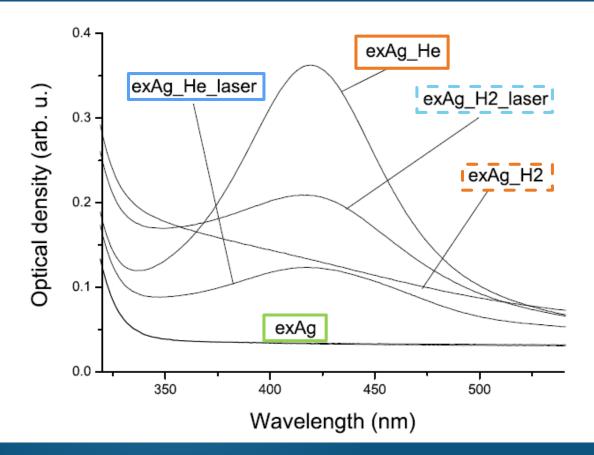
Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

G. Battaglin^a, E. Cattaruzza^a, F. Gonella^a, R. Polloni^a, F. D'Acapito^b,
 S. Colonna^c, G. Mattei^d, C. Maurizio^d, P. Mazzoldi^d, S. Padovani^{d,*},
 C. Sada^d, A. Quaranta^e, A. Longo^f

Soda lime glasses doped with Ag by ion exchange Different treatments:

Laser irradiation 532nm, 10ns, 0.5 J/cm2 He irradiation 1.5 MeV, 2*10^16 at/cm2

Annealing 5h, 250 C, (Ar+5%H2)


Experimental techniques

Optical absorption

X-ray Absorption Spectroscopy (XAS)

Optical absorption

Peaks due to the Surface Plasmon Resonance (SPR) of Ag clusters.

Blind to oxidized forms of Ag.

Battaglin et al. NIM B 200 (2003), 185.

As-exchanged glass

− • − data

Ge-0.5

Ge-0.625

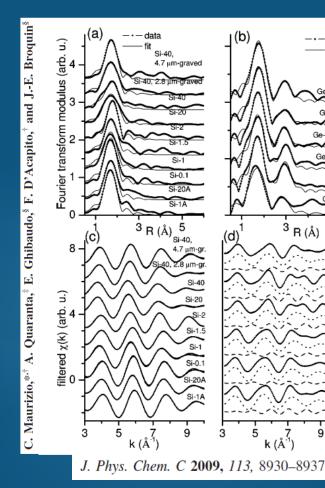
Ge-0.75

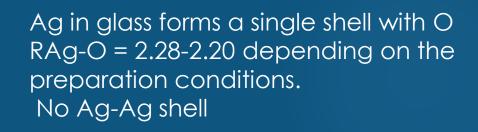
5

Ge 0.26 Ge-

0.5

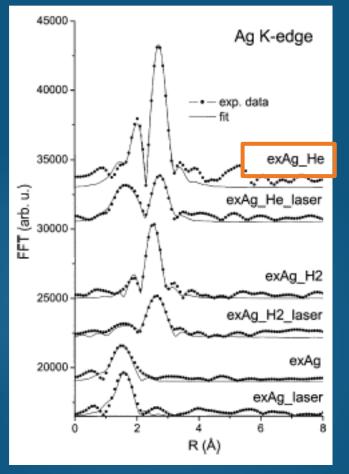
Ge 0.625


Ge-

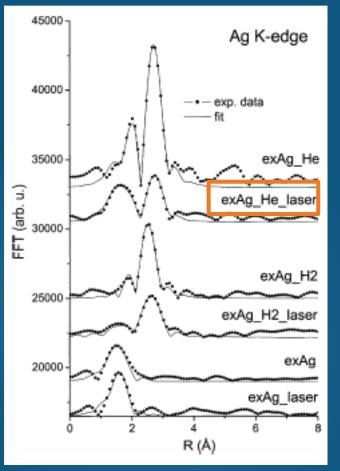

0.75

9

³ R (Å)



He irradiation


Battaglin et al. NIM B 200 (2003), 185.

Coordination	$R(\mathbf{\dot{A}})$	N	$\sigma^2 (10^{-4} \text{ Å}^2)$
Ag-O	2.08 ± 0.06	1±2	128 ± 354
Ag–Ag	2.86 ± 0.02	8 ± 1	98 ± 11

Formation of met-Ag (about 70±10%)

Bulk clusters, the Ag-Ag spacing is near the bulk value (2.88 Å)

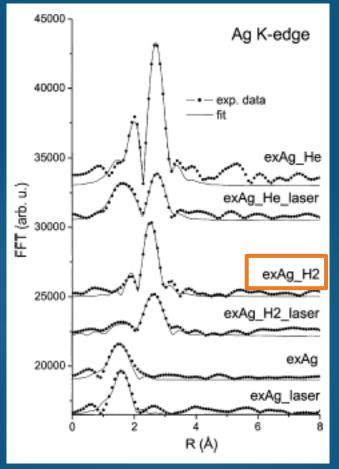
He irr. + laser treatment

Battaglin et al. NIM B 200 (2003), 185.

Coordination	R (Å)	N	$\sigma^2 (10^{-4} \text{ Å}^2)$
Ag-O Ag-Ag	2.10 ± 0.02 2.84 ± 0.02	1.3 ± 0.5 3.2 ± 0.7	87 ± 63 114 ± 27

ര

om


Istituto Officina dei Materiali

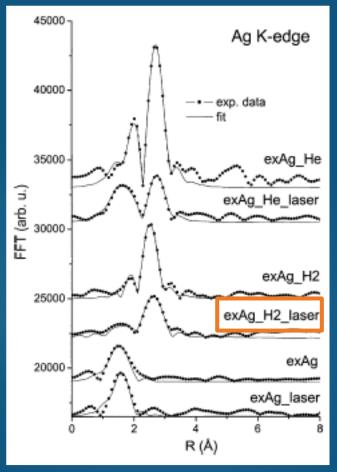
Reduction of the metal peak in the FT

Nanometric clusters, the Ag-Ag spacing is shorter than the bulk value.

H2 treatment

Battaglin et al. NIM B 200 (2003), 185.

Coordination	$R(\mathbf{\dot{A}})$	Ν	$\sigma^2 (10^{-4} \text{ Å}^2)$
Ag-O	2.26 ± 0.06	0.5 ± 0.4	52 ± 47
Ag–Ag	2.70 ± 0.02	3.4 ± 0.7	93 ± 20


Formation of Ag metal

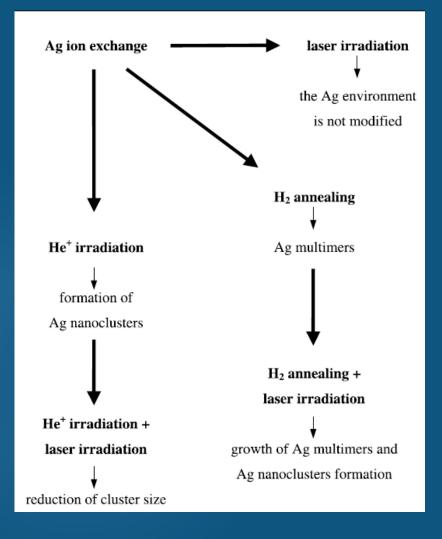
Again , nanometric clusters, the Ag-Ag spacing is shorter than the bulk value.

Clusters not seen by diffraction nor exhibit SPR

He treatment + laser

Battaglin et al. NIM B 200 (2003), 185.

			1
Coordination	$R(\mathbf{A})$	N	$\sigma^2 (10^{-4} \text{ Å}^2)$
Ag-O	2.20 ± 0.06	0.5 ± 0.4	57 ± 52
Ag–Ag	2.76 ± 0.02	5±1	198 ± 32

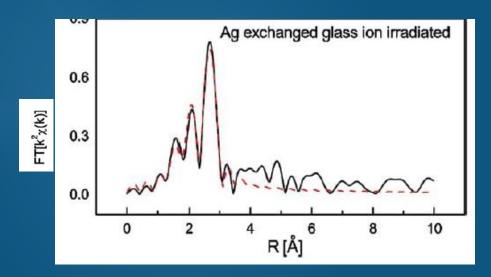

Formation of Ag metal

Growth of the nanoclusters, the Ag-Ag spacing is longer than before.

Clusters not seen by diffraction

Conclusion

Scheme of the effects of the various treatments


www.elsevier.com

Ion beam induced nanosized Ag metal clusters in glass

H.-E. Mahnke a,*, B. Schattat a, P. Schubert-Bischoff a, N. Novakovic a,b

2 step process Ion irradiation of Ag-exchanged glasses, 600 MeV Au @ 10^11-10^13 at/cm2 Annealing reducing atmosphere 30', 340 C, Ar-H2

System	Shell 1
Ag in glass	2.85(2) 2.25(10)

Small cluster, < 20nm

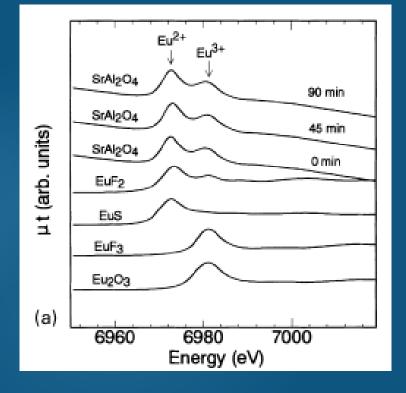
RE-doped AI-B glasses

X-ray induced reduction of rare earth ion doped in Na₂O-Al₂O ₃-B₂O₃ glasses

Yutaka Shimizugawa,^{3*} Norimasa Umesaki,^a Katsumi Hanada,^b Ichiro Sakai^b and Jianrong Qiu^c

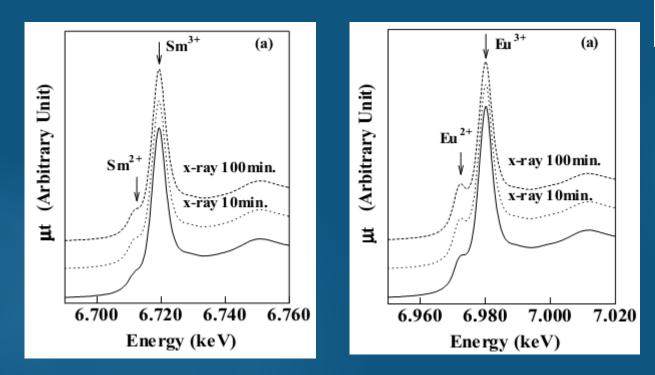
J. Synchrotron Rad. (2001). 8, 797-799

Composition 5Na2O-10Al2O3-85B2O3 RE (Sm, Eu) 0.05 mol % Irradiation: A: 10 and 100 min, X-rays before LIII edge B: UV (254 nm) for 30'.


Effects of the two processes on the balance RE3+/ RE2+

RE valence states

JIANRONG QIU^a⁺*, M. KAWASAKI^b, K. TANAKA^b, Y. SHIMIZUGAWA^c and K. HIRAO


J. Phys. Chem Solids Vol 59, No. 9, pp. 1521-1525, 1998

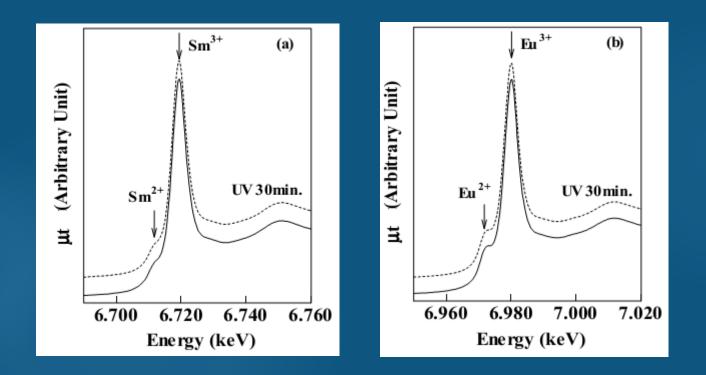
Examples from crystals: Eudoped SrAl2O4

The 2+ and 3+ valence state have White Lines at different energy values.

Process A: X-ray Irradiation

X-ray induced reduction of rare earth ion doped in Na,O-AI,O ,-B,O, glasses

Yutaka Shimizugawa,^{*} Norimasa Umesaki,^{*} Katsumi Hanada,^{*} Ichiro Sakai^{*} and Jianrong Qiu[°]


J. Synchrotron Rad. (2001). 8, 797-799

Clear increase of a peak before the white line for increasing irradiation times. Peak due to RE2+ state.

Process B: UV irradiation

n

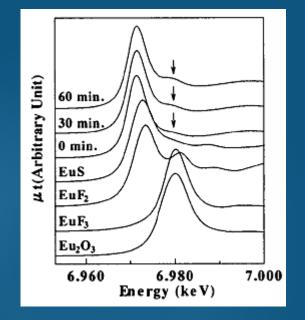
Istituto Officina dei Materiali

No change of the spectrum upon UV irradiation.

Eu-doped borate glasses

J. Synchrotron Rad. (1999). 6, 624-626

Local structure around europium ions doped in borate glasses


Yutaka Shimizugawa,^{a*} Norimasa Umesaki,^a Jianrong Qiu^b and Kazuyuki Hirao^{bc}

Composition (70-90) B2O3, (10-30) Na2O, 10 Eu2O3

Irradiation X-rays (6941 eV, before L3 edge) 30' and 60 '

Eu-doped borate glasses

Slight growth of Eu3+ species upon X-ray irradiation .

Er:CaF2

CaF2 is known as a host for 2+ RE RE takes the place of a Ca ion and coordinates with a charge compensating defect Preliminary study for the investigation of highly damaged Erdoped silica fibres.

Irradiation: low energy X-rays, (RX 45 kV - 5 min., 1,83 kGy)

OPTICS LETTERS / Vol. 39, No. 21 / November 1, 2014 (b) Before irradiatio Before rradiation After 0.12 irradiation After irradiation E 0.08 0.04 0.00 1400 1450 1500 1650 1600 1400 1450 1500 1550 1600

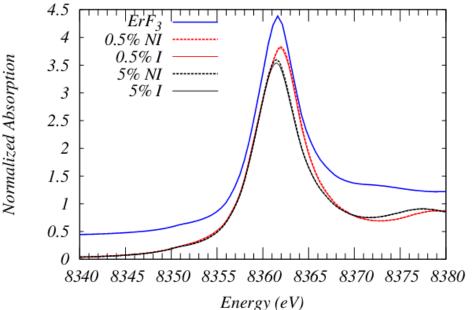
Yasmine Mebrouk,* Franck Mady, Mourad Benabdesselam, Jean-Bernard Duchez, and Wilfried Blanc

λ (nm)

F. d'Acapito, dacapito@esrf.fr

λ (nm)

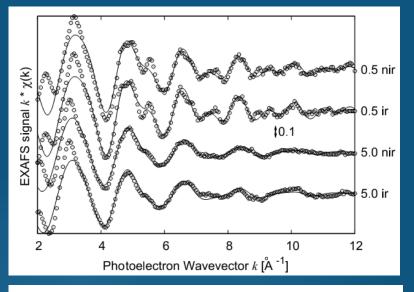
r

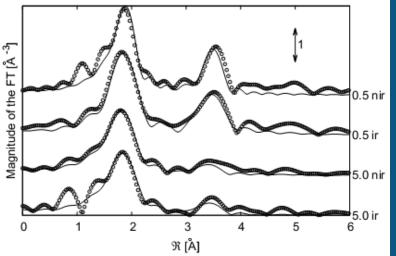


0

Istituto Officina dei Materiali

XANES data



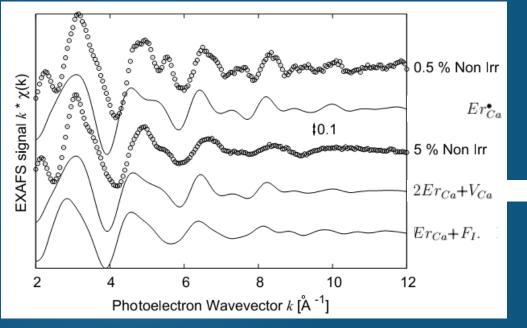

No difference between I and NI samples.

Considerable difference between high and low conc samples.

EXAFS and DFT

DFT, Structural simulation, supercell 81 atoms

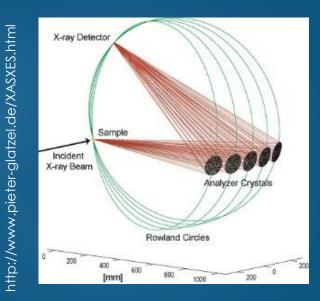
		marcarea	n parenence	001		
Sample		F she	ell		Ca Sł	nell
	Ν	R (Å)	$\sigma^2(\text{\AA}^2)$	Ν	R (Å)	$\sigma^2({ m \AA}^2)$
CaF_2	8	2.381	-	12	3.888	-
0.5 NI	8	2.28(2)	0.002(1)	12	3.89(2)	0.006(2)
0.5 I	8	2.28(2)	0.002(1)	12	3.89(3)	0.006(2)
5.0 NI	8	2.27(2)	0.004(2)	12	3.89(5)	0.03(2)
$5.0 \ I$	8	2.29(2)	0.005(2)	12	3.89(5)	0.03(1)
$\operatorname{Er}_{Ca}^{\bullet}$	8	2.282	-	12	3.92	-
$2 \mathrm{Er}_{Ca} + \mathrm{V}_{Ca}$	2	2.19	-	4	3.87	-
	6	2.31	-	$\overline{7}$	3.93	-
$2\mathrm{Er}_{Ca}+\mathrm{F}_{I}$	4	2.28	-	4	3.72	-
	5	2.38	-	4	3.94	-
			-	4	4.02	-

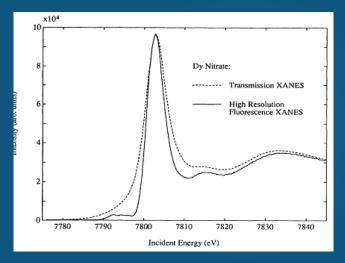


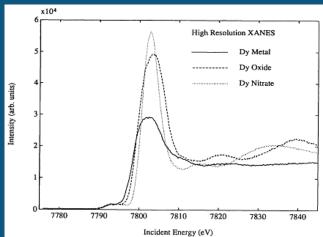
Perspectives

Molecular Dynamics

Simulation of XAS spectra via MD-DFT. 300K, NVT, step 2fs, total 8.5 ps EXAFS: average over 1ps Easy comparison between different test sites

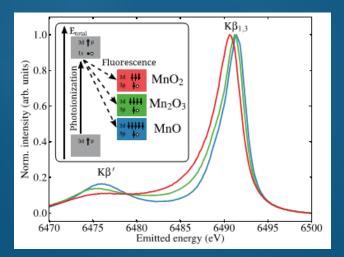

Strong similarity with simulated spectra of Er_{Ca}^{\bullet} or $2Er_{Ca}+V_{Ca}$.

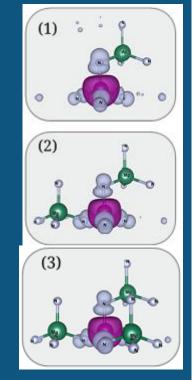

Poor agreement with $E_{r_{Ca}+F_{I}}$


Elimination of the Inner-Shell Lifetime Broadening in X-Ray-Absorption Spectroscopy

K. Hämäläinen, (a) D. P. Siddons, J. B. Hastings, and L. E. Berman

By collecting fluorescence with an energy resolution lower than the core-hole width spectra with finer details can be collected.

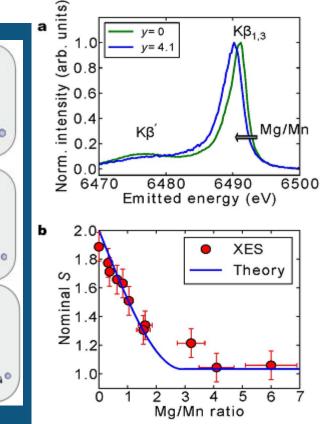

Invited Review


Hard x-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors

M Rovezzi and P Glatzel

European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble, France

Analysis of the emission lines: info on the spin state



(Mn, Mg):GaN

ര

Istituto Officina dei Materiali

Conclusion

- XAS useful complement for other techniques (RAMAN, XRD, Mossbauer, ...)
- Direct determination of local structural parameters
- Determination of valence states
- Increased capability of ab-initio simulations of structures and XAS spectra
- Novel experimental techniques
 - RIXS, HERFD